National Institute for Health and Care Excellence

# COVID-19 rapid guideline: managing the long-term effects of COVID-19

[G] Evidence reviews for risk factors (update)

NICE guideline NG188

November 2021

Guideline version (Final)



COVID-19 rapid evidence review: Risk factors (November 2021)

© NICE 2021. All rights reserved. Subject to Notice of rights.

1 of 59

#### Disclaimer

The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and/or their carer or guardian.

Local commissioners and/or providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties.

NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the <u>Welsh Government</u>, <u>Scottish</u> <u>Government</u>, and <u>Northern Ireland Executive</u>. All NICE guidance is subject to regular review and may be updated or withdrawn.

### Copyright

© NICE 2021 All rights reserved. Subject to Notice of rights...

## Literature search

The guideline on managing the long-term effects of COVID-19 is a living guideline. This means that weekly searches of newly published literature are undertaken for continuous evidence surveillance and stored in a database. Published studies, including pre-print and final published versions were screened using the inclusion and exclusion criteria in the relevant review protocols (see <u>Appendix 2</u>). Additional criteria were used for the evidence review of risk factors, as described in the <u>methods and processes</u>. One reviewer screened titles and abstracts, with a second reviewer checking 10% of entries. Having identified the evidence, 1 reviewer assessed the full text references of potentially relevant evidence to determine whether they met the inclusion criteria for this evidence review. All uncertainties were discussed and referred to an adviser if needed. See <u>Appendix 4</u> for the study flow chart of included studies and <u>Appendix 8</u> for the list of excluded studies, with reasons for exclusion.

## **Review question 3**

What risk factors are associated with developing post-COVID-19 syndrome?

The review protocol is shown in <u>Appendix 2</u>.

## Included studies

There was 1 meta-analysis identified from the weekly surveillance searches that reported on risk factors for persisting symptoms following acute COVID-19 illness. In addition to this review, there were 3 large cohort studies included in the review. Details of the systematic review are described in Table 1 and the cohort studies in Table 2.

### Table 1 Included meta-analysis for review question 3

| Study<br>detailsPopulationTime since acute<br>COVID-19 illnessFindingsAnalysis prese | nted |
|--------------------------------------------------------------------------------------|------|
|--------------------------------------------------------------------------------------|------|

| Thompson  | Adults self- | 4 weeks or more | Risk factors          | Meta-analysis of 10      |
|-----------|--------------|-----------------|-----------------------|--------------------------|
| 2021      | reporting    |                 | associated with a     | cohort studies           |
| Meta-     | COVID-19     |                 | higher risk of long   | Comparison with          |
| analysis  | infection.   |                 | covid were: older     | electronic health record |
| Pre-print | COVID-19     |                 | age, being female,    | data                     |
|           | cases were   |                 | poor pre-existing     |                          |
|           | defined by   |                 | mental or general     |                          |
|           | self-report, |                 | health, asthma,       |                          |
|           | including    |                 | overweight, ethnicity |                          |
|           | testing      |                 |                       |                          |
|           | confirmation |                 |                       |                          |
|           | and health   |                 |                       |                          |
|           | care         |                 |                       |                          |
|           | professional |                 |                       |                          |
|           | diagnosis    |                 |                       |                          |
|           | Few          |                 |                       |                          |
|           | participants |                 |                       |                          |
|           | hospitalised |                 |                       |                          |
|           | (0.8-5.2%).  |                 |                       |                          |

## Table 2: Included cohort studies for review question 3

| Study details                                                      | Population                                                                                                                                                                                                                        | Approach                                                                                                                                                                                                                                                                                                   | Outcomes                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Taquet 2021<br>Retrospective<br>cohort<br>Published                | 236,379 patients with<br>a confirmed diagnosis<br>of COVID-19<br>and two matched<br>cohorts: patients<br>diagnosed with<br>influenza and patients<br>diagnosed with any<br>respiratory tract<br>infection including<br>influenza. | Data obtained from the<br>TriNetX electronic health<br>records network.<br>Estimated the incidence<br>of 14 neurological and<br>psychiatric outcomes in<br>the 6 months after a<br>confirmed diagnosis of<br>COVID-19                                                                                      | Risks for neurological or<br>psychiatric diagnosis were<br>greatest in, but not limited to,<br>patients who had severe<br>COVID-19.                                                                                                                                                                                               |
| Whitaker 2021<br>(REACT 2)<br>Retrospective<br>cohort<br>Pre-print | Random population of<br>508,707 people in the<br>community in England<br>of which 19.2%<br>reported a history of<br>COVID-19 illness.                                                                                             | Rounds 3-5 of the<br>REACT-2 study where<br>people were asked about<br>prior history of COVID-19<br>and the presence and<br>duration of 29 different<br>symptoms.<br>Estimated the prevalence<br>of symptom persistence at<br>12 weeks and attempted<br>to cluster individuals by<br>symptoms experienced. | Risk factors for the persistence<br>of one or more symptoms:<br>Higher in women OR 1.51 95%<br>CI 1.46 to 1.55 and increased<br>with age.<br>Self-reported overweight OR<br>1.16 95% CI 1.12 to 1.21<br>Obesity OR 1.53 95% CI 1.47 to<br>1.59<br>Smoking OR 1.35 95% CI 1.28<br>to 1.41<br>Vaping OR 1.26 95% CI 1.18 to<br>1.34 |

| 2021<br>Retrospective<br>cohort study<br>Published65, 55% men) in<br>hospital with COVID-<br>19 and discharged<br>alive by 31 August<br>2020,h2021<br>Main<br>Published65, 55% men) in<br>hospital with COVID-<br>19 and discharged<br>alive by 31 August<br>Publishedh19 and discharged<br>alive by 31 August<br>Publisheda2020,Main<br>Published | Individuals admitted to<br>hospital with COVID-1,<br>identified using HES<br>admitted patient care<br>records<br>Matched to controls from<br>a pool of about 50 million<br>people in England for<br>personal and clinical<br>characteristics from 10<br>years of electronic health<br>records | Hospitalisation with COVID-19<br>OR 3.46 95% CI 2.93 to 4.09<br>Lower risk with Asian ethnicity<br>OR 0.80 95% CI 0.74 to 0.88<br>After admission to hospital for<br>COVID-19, 29% were<br>readmitted and 12% died within<br>a mean follow-up of 140 days.<br>Rates of multiorgan dysfunction<br>after discharge were raised in<br>individuals with COVID-19<br>compared with those in the<br>matched control group.<br>The absolute risk of death,<br>readmission, and multiorgan<br>dysfunction after discharge was<br>greater for individuals aged 70<br>or more and for individuals of |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## Key results

The meta-analysis (Thompson 2021) identified 7 risk factors and protective factors that were associated with a higher risk of persisting symptoms at least 4 weeks from acute COVID-19 illness. This data came from 10 longitudinal studies and was further supported with data from electronic health records. Results of this meta-analysis are shown in Table 3.

## Table 3: Risk and protective factors associated with higher risk of persistingsymptoms (Thompson 2021)

| Risk/protective factors         | Data from longitudinal studies | Data from electronic health records |
|---------------------------------|--------------------------------|-------------------------------------|
|                                 | OR (95% CI)                    | OR (95% CI)                         |
| Female sex                      | 1.49 (1.24 to 1.79)            | 1.51 (1.41 to 1.61)                 |
| Poor pre-pandemic mental health | 1.46 (1.17 to 1.83)            | 1.57 (1.47 to 1.68)                 |
| Poor general health             | 1.62 (1.25 to 2.09)            | 1.26 (1.18 to 1.35)                 |
| Asthma                          | 1.32 (1.07 to 1.62)            | 1.56 (1.46 to 1.67)                 |

COVID-19 rapid evidence review: Risk factors (November 2021)

© NICE 2021. All rights reserved. Subject to Notice of rights.

| Overweight or obese                 | 1.25 (1.01 to 1.55)       | 1.31 (1.21 to 1.42)                          |
|-------------------------------------|---------------------------|----------------------------------------------|
| Non-white ethnic minority<br>groups | 0.8 (95% CI 0.54 to 1.19) | 0.75 (0.67 to 0.84)<br>South Asian ethnicity |
|                                     |                           |                                              |

The results of the meta-analysis were supported by Whitaker 2021 (REACT 2) which also identified that female sex, being overweight or obese were significantly associated with a higher risk of one or more symptoms at 12 weeks since acute COVID-19 illness. They also found Asian ethnicity to be a protective factor. In addition, they identified that smoking (OR 1.35 95% CI 1.28 to 1.41), vaping (OR 1.26 95% CI 1.18 to 1.34) and previous hospitalisation for acute COVID-19 (OR 3.46 95% CI 2.93 to 4.09) were significantly associated with higher risk of having one or more symptoms at 12 weeks.

Taquet 2021 found that risks for neurological or psychiatric diagnosis were greatest in, but not limited to, patients who had severe COVID-19. 'Severe' meant hospitalisation (versus non-hospitalisation), need for ICU (versus non-ICU), or encephalopathy (versus no encephalopathy). Similarly, Ayoubkhani 2021 found that the absolute risk of death, readmission, and multiorgan dysfunction after discharge was greater for individuals aged 70 or more and for individuals of white ethnic background.

## Subgroups

No subgroup data was identified.

## Strengths and limitations

One of the main limitations of the Thompson 2021 meta-analysis was that the study selection was not carried out using a systematic search but was based on UK longitudinal study databases and UK electronic health records. The authors noted heterogeneity across the studies but did not fully address this within the review.

The evidence included mostly adults and therefore, there was no evidence on the risk factors for long-term effects in children.

The data used in meta-analysis was mostly self-reported which increases the risk of recall bias. Similarly, the cohort studies were also rated as high risk of bias due to issues around participant selection and recall bias. GRADE was used to assess the certainty of the evidence on risk factors. The certainty in the evidence was low to very low. Most outcomes were downgraded due to high risk bias in the studies and imprecision where the 95% CI crossed the line of no effect.

## GRADE profiles are reported in MAGICapp.

## Expert panel discussion

This section describes how the expert panel considered the evidence in relation to the recommendations within the guidance.

## Benefits and harms

The panel discussed that identifying risk or protective factors associated with developing post-COVID-19 syndrome may help to determine which individuals could be more likely to develop the condition. They can be used to inform the shared decision making process. However, the panel were concerned that using risk factors as part of diagnosis can potentially lead to people who do not have specific risk factors being overlooked. The panel stressed the importance of ongoing monitoring of people who do not have the main risk factors under consideration. These people may be recovering as expected up to 12 weeks but might develop symptoms thereafter.

### Certainty of the evidence

The evidence base remains uncertain. All risk and protective factors were assessed in GRADE as being low to very low certainty. Most of the evidence came from a nonsystematic meta-analysis of longitudinal studies in the UK although the findings were consistent with data in electronic health records. The panel's main concerns were around the bias that may be introduced due to the self-reporting of symptom persistence, which could mean that the data may not be generalisable to the whole population.

Because of this, the panel were unable to draw firm conclusions from results on specific risk factors and did not change the recommendation.

### **Preferences and values**

Patient experience shows that one of the most important issues around the longterm effects of COVID-19 is the uncertainty around what to expect when recovering from acute COVID-19. This can lead to fear and anxiety for patients. It would be helpful to discuss risk factors for developing post-COVID-19 syndrome as part of a shared decision-making conversation on expectations around recovery, but the evidence base is currently low quality. The panel did not want to emphasis certain groups and inadvertently miss groups who are not considered 'at risk'.

## **Resource and other considerations**

The panel noted resource implications of time and expertise needed to assess all the risk factors in a consultation. However, the panel doubted whether the cost could be justified based on such limited evidence, especially since there could be resource savings longer-term by preventing inappropriate service use. The panel wished to avoid directing people along specific pathways inappropriately, for example where asthma is suspected but unconfirmed.

### Other considerations

There was no evidence available for risk and protective factors for long-term effects of COVID-19 in children.

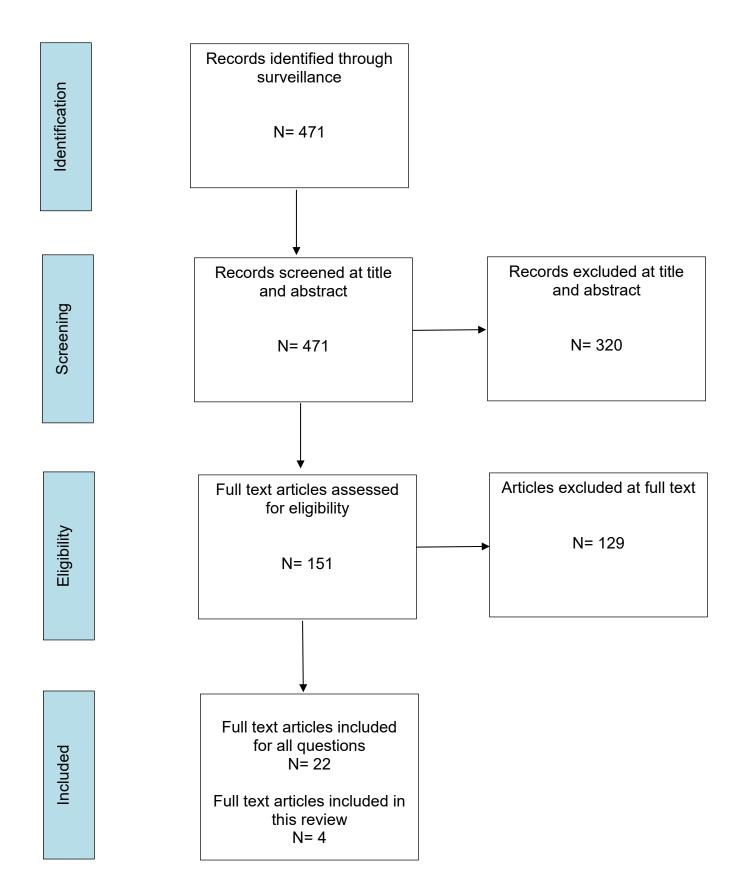
## Appendix 1 Methods used to develop the guidance

Please see the <u>methods chapter</u> for details on how this guideline was developed.

## **Appendix 2 Review protocols**

| Criteria    | Notes                                                                                                                                                                                                                                         |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Population  | People experiencing symptoms or clusters of symptoms (ongoing physical and mental health) from the onset of acute COVID-19 illness.                                                                                                           |
| Exposure    | Any                                                                                                                                                                                                                                           |
| Comparators | Not applicable                                                                                                                                                                                                                                |
| Outcomes    | Risk factors or factors that are associated with post-<br>COVID-19 syndrome (as defined by the study)                                                                                                                                         |
| Settings    | Any                                                                                                                                                                                                                                           |
| Subgroups   | <ul> <li>Groups as defined in the EIA for example, age, sex, ethnicity, including:         <ul> <li>Children and young people</li> </ul> </li> <li>Diagnostic status of acute COVID-19 (e.g. confirmed or high clinical suspicion)</li> </ul> |
|             | <ul> <li>Treatment setting for acute COVID-19,<br/>including:</li> </ul>                                                                                                                                                                      |
|             | <ul> <li>Hospitalised for acute COVID-19</li> </ul>                                                                                                                                                                                           |
|             | <ul> <li>Non-hospitalised for acute COVID-19</li> </ul>                                                                                                                                                                                       |
|             | <ul> <li>Care or residential homes)</li> </ul>                                                                                                                                                                                                |
|             | Health care workers                                                                                                                                                                                                                           |
| Study types | Any<br>The following study design types for this question are<br>preferred. Where these studies are not identified,<br>other study designs will be considered.<br>Preferred:                                                                  |
|             | Systematic reviews of cohort studies     Cohort studies (prospective or retrospective)     Cross-sectional studies  ew: Risk factors (November 2021)     10 of 59                                                                             |

RQ 3: What risk factors are associated with developing post-COVID-19 syndrome?


| Countries        | Any            |
|------------------|----------------|
| Timepoints       | Not applicable |
| Other exclusions | None           |

## Appendix 3 Literature search strategy

## **Database strategies**

Please refer to the <u>search history record</u> for full details of the search.

## Appendix 4 Study flow diagram



## Appendix 5 Included studies

#### Study

Ayoubkhani, Daniel, Khunti, Kamlesh, Nafilyan, Vahe et al. (2021) Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study. BMJ (Clinical research ed.) 372: n693

Taquet, Maxime, Geddes, John R, Husain, Masud et al. (2021) 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. The lancet. Psychiatry

Thompson, Ellen, Williams, Dylan, Walker, Alex et al. (2021) Risk factors for long COVID: analyses of 10 longitudinal studies and electronic health records in the UK.

Whitaker M, Elliott J, Chadeau-Hyam M et al. (2021) Persistent symptoms following SARS-CoV-2 infection in a random community sample of 508,707 people.

## **Appendix 6 Evidence tables**

## Thompson, 2021

Bibliographic Reference Thompson, Ellen; Williams, Dylan; Walker, Alex; Mitchell, Ruth; Niedzwiedz, Claire; Yang, Tiffany; Huggins, Charlotte; Kwong, Alex; Silverwood, Richard; Gessa, Giorgio Di; Bowyer, Ruth C.E.; Northstone, Kate; Hou, Bo; Green, Michael; Dodgeon, Brian; Doores, Katie; Duncan, Emma; Williams, Frances; Steptoe, Andrew; Porteous, David; McEachan, Rosemary; Tomlinson, Laurie; Goldacre, Ben; Patalay, Praveetha; Ploubidis, George; Katikireddi, Srinivasa Vittal; Tilling, Kate; Rentsch, Christopher; Timpson, Nicholas; Chaturvedi, Nishi; Steves, Claire; =OpenSAFELY, Collaborative; Risk factors for long COVID: analyses of 10 longitudinal studies and electronic health records in the UK; 2021

| Study details                     |                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study design                      | Meta-analysis                                                                                                                                                                                                                                                                                                                                                                 |
| Aims/ review questions            | To report the frequency of long COVID among individuals with<br>suspected and test-confirmed COVID-19 and examined<br>associations with sociodemographic and pre-pandemic health<br>risk factors                                                                                                                                                                              |
| Country/ Geographical<br>location | UK                                                                                                                                                                                                                                                                                                                                                                            |
| Setting(s)                        | Population based and primary care                                                                                                                                                                                                                                                                                                                                             |
| Population description            | Adults self-reporting COVID-19 infection. COVID-19 cases<br>were defined by self-report, including testing confirmation and<br>health care professional diagnosis. Long COVID was defined<br>as per NICE as either ongoing symptomatic COVID-19 (OSC)<br>or post-COVID-19 syndrome (PCS) using self-reported<br>symptom duration.                                             |
| Inclusion criteria                | Minimum inclusion criteria were pre-pandemic health<br>measures, age, sex, ethnicity plus self-reported COVID-19,<br>and self-reported duration of COVID-19 symptoms.                                                                                                                                                                                                         |
| Exclusion criteria                | None stated                                                                                                                                                                                                                                                                                                                                                                   |
| Intervention/test/approach        | Data were drawn from 10 UK longitudinal studies that had<br>conducted surveys before and during the COVID-19<br>pandemic comprising five age-homogenous cohorts and five<br>age-heterogeneous cohorts.<br>An additional population-based cohort study to measure long<br>COVID recording in electronic health record (EHR) data from<br>primary care practices was conducted. |
| Searching methods                 | No search was conducted. Data were drawn from 10 UK LS that had conducted surveys before and during the COVID-19 pandemic comprising five age-homogenous cohorts and five age-heterogeneous cohorts.                                                                                                                                                                          |

|                                         | An additional population-based cohort study to measure long<br>COVID recording in electronic health record (EHR) data from<br>primary care practices was conducted.                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methods of data analysis                | Longitudinal study (LS) analysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         | Main analyses were conducted in studies with a direct self-<br>reported measure of COVID-19 symptom length. Associations<br>between each factor and both long COVID outcomes (long<br>COVID and PCS) were assessed in separate logistic<br>regression models within each study. We adjusted for a<br>minimal set of confounders across all studies, where relevant:<br>age (adjusted as a continuous variable), sex, and ethnicity.<br>We report odds ratios (ORs) and 95% confidence intervals<br>(CIs). |
|                                         | Attrition and survey design were addressed by weighting<br>estimates to be representative of their target population in<br>each included study.                                                                                                                                                                                                                                                                                                                                                           |
|                                         | To synthesise effect sizes across studies, fixed-effect meta-<br>analysis with restricted maximum likelihood was carried out<br>and repeated with random-effects modelling for comparison.                                                                                                                                                                                                                                                                                                                |
|                                         | Sensitivity analysis: to mitigate index event bias, inverse<br>probability weights (IPW) were derived for risk of COVID-19.<br>These were derived in each LS separately but following a<br>common approach used previously. Derived weights were<br>then applied in all analysis models as a sensitivity check.                                                                                                                                                                                           |
|                                         | EHR analysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | Logistic regression was used to assess whether GP-recorded<br>long COVID was associated with each sociodemographic or<br>pre-pandemic health characteristic. We adjusted for the same<br>set of confounders as used in the LS analyses: age (as<br>categorical variable), sex, ethnicity.                                                                                                                                                                                                                 |
|                                         | In further analyses of age as a risk factor for long COVID in<br>the EHR data, we assigned individuals within 10-year<br>categories an age at the midpoint of each group, then<br>assessed the trend in long COVID frequency with age using<br>linear and non-linear meta-regression.                                                                                                                                                                                                                     |
| Methods to investigate<br>heterogeneity | The <i>I2</i> statistic was used to report heterogeneity between estimates.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Risk of bias assessment                 | No risk of bias assessment was reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Summary of findings                     | Longitudinal studies (LS):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | Females had higher risk than males of having ongoing symptomatic COVID-19 (OSC) and post-COVID-19 syndrome                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

(PCS)(at 4+ weeks: OR=1.49; 95%CI: 1.24-1.79; at 12+ weeks: OR=1.60; 95%CI: 1.23-2.07).

No clear evidence was found for individuals of non-white ethnicity (compared to individuals of white ethnicity) having differential risk of OSC and PCS combined (OR for symptoms lasting 4+ weeks= 0.80; 95%CI: 0.54-1.19).

Non-white ethnicity was associated with lower risk of PCS specifically compared to white ethnicity (OR=0.32; 95%CI: 0.22-0.47) after meta-analysis, but these study-level findings displayed a high degree of heterogeneity ( $I^2$ =75%, P<0.001). Across LS, no strong evidence was found for associations of index of multiple deprivation (IMD) with either outcome (OSC or PCS).

Having not attained a degree from higher education was associated with lower risk of PCS specifically (OR: 0.73; 95% CI: 0.57-0.94), but not with OSC and PCS in combination (OR: 0.95: 95% CI: 0.80-1.14).

When synthesising associations for health characteristics across LS, those with poor or fair pre-pandemic self-reported general health were found to have greater odds of having symptoms for both long COVID-19 outcomes (at 4+ weeks: OR=1.62; 95%CI: 1.25-2.09; at 12+ weeks: OR=1.66; 95%CI: 1.14- 2.40).

Greater pre-pandemic psychological distress was also associated with higher risk of both long COVID outcomes (at 4+ weeks: OR=1.45; 95%CI: 1.16-1.82; PCS: OR=1.58; 95%CI: 1.15-2.17).

No strong evidence was observed for a linear association of BMI with either outcome. In models to examine the potential importance of a BMI threshold in relation to long COVID, overweight/obesity was associated with increased odds of symptoms lasting for 4+ weeks (OR= 1.24; 95%CI: 1.01-1.53) threshold but not with PCS specifically (OR 0.95, 95% CI: 0.70-1.28).

Associations were not found for diabetes, hypertension, or high cholesterol with either outcome, although modest point estimates were on the side of higher long COVID risk in several instances. Asthma was the only specific medical condition associated with increased odds of having symptoms for 4+ weeks (OR=1.31; 95%CI: 1.06-1.62), although the association with PCS specifically was closer to the null (OR=1.13;95%CI: 0.80-1.58).

ELECTRONIC HEALTH RECORDS (EHR): In keeping with the LS results, females had higher risk of long COVID than males (OR=1.51; 95%CI:1.41-1.61), while odds were lower in

|                                 | individuals of South Asian (compared to (OR=0.75;<br>95%CI:0.67-0.84) or black ethnicity, relative to white ethnicity<br>(OR=0.66; 95%CI:0.52-0.83).<br>Individuals living in areas with the least deprivation had higher<br>odds of having a long COVID-19 code compared to those in                                                                                                                                                                                                                                                                                                      |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | the most deprived IMD quintile. In EHRs, increased odds of<br>having a long COVID-19 code was seen in individuals with<br>pre-existing comorbidities (OR=1.26; 95%CI:1.18-1.35) and<br>psychiatric conditions (OR=1.57; 95%CI:1.47-1.68). Again, as<br>with the population-based studies an increased risk was<br>observed in individuals with a pre-pandemic diagnosis of<br>asthma (OR=1.56; 95%CI:1.46-1.67) and overweight and<br>obesity (OR=1.31, 95%CI:1.21-1.42). No increase in risk was<br>observed for diabetes.                                                                |
| Source of funding               | This work was supported by the National Core Studies, an initiative funded by UKRI, NIHR and the Health and Safety Executive. The COVID-19 Longitudinal Health and Wellbeing National Core Study was funded by the Medical Research Council (MC_PC_20030).                                                                                                                                                                                                                                                                                                                                 |
| Study limitations (Author)      | The data are observational, preventing causal conclusions to<br>be drawn on the role of risk factors in long COVID<br>development, and that whilst the authors attempted to<br>address both selection into the samples from study attrition<br>and selecting upon COVID-19 case status (which can induce<br>index event bias), there remains the possibility that potential<br>bias has influenced association estimates. Finally, not all<br>studies had test confirmation of COVID-19 status, and some<br>individuals may have misattributed persistent symptoms to<br>other conditions. |
| Study limitations<br>(Reviewer) | No predifined inclusion criteria were stated for the included studies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                 | No quality assessment was reported for the included studies.<br>Data for certain risk factors was missing from the EHR sample                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                 | (e.g. smoking status) preventing comparison between the longitudinal study and EHR data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                 | The data was self-reported, increasing the risk of recall bias.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Other details                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Study arms

Risk factor (N = 13234)

Generic risk factor arm for use with each risk factor in outcome table. N stated as overall sample but adapt to each risk factor.

Reference (N = 13234)

Generic reference arm for use with each risk factor in outcome table. N stated as overall sample but adapt to each risk factor.

| Characteristics<br>Study-level characteristics                   |                  |
|------------------------------------------------------------------|------------------|
| Characteristic                                                   | Study (N = 6899) |
| Age                                                              | 19.9 to 63       |
| Range                                                            |                  |
| White %                                                          | 43.8 to 98.4     |
| Range                                                            |                  |
| Non-white ethnic minority                                        | 1.3 to 50.9      |
| Range                                                            | 0.0 45 4 5       |
| Hospitalised with COVID-19<br>Range                              | 0.8 to 4.5       |
| % Female                                                         | 55 to 96         |
| Range                                                            | 55 10 90         |
| Degree educated (%)                                              | 10 to 50.6       |
| Range                                                            |                  |
| Managerial, admin, professiRange of duration of symptoms (weeks) | 18 to 38.9       |
| Intermediate professional                                        | 16.6 to 41.9     |
| Range of duration of symptoms (weeks)                            |                  |
| Manual/Routine professional                                      | 19.1 to 42.6     |
| Range of duration of symptoms (weeks)                            |                  |
| % Not in employment Range                                        | 0.3 to 20.5      |
| Age 18-24 years                                                  | 184              |
| Nominal                                                          |                  |
| Age 25-34 years                                                  | 515              |
| Nominal                                                          |                  |
| Age 35-44 years                                                  | 897              |
| Nominal                                                          |                  |
| Age 45-54 years                                                  | 1238             |
| Nominal                                                          |                  |
| Age 55-69 years                                                  | 1088             |
| Nominal                                                          |                  |
| COVID-19 rapid evidence review: Risk factors (November 2021)     | 19 of 59         |

© NICE 2021. All rights reserved. Subject to Notice of rights.

| Characteristic                           | Study (N = 6899) |
|------------------------------------------|------------------|
| Age 70-79 years                          | 193              |
| Nominal                                  |                  |
| Age 80 years or olderNominal             | 74               |
| Female                                   | 2678             |
| Nominal                                  |                  |
| Male                                     | 1511             |
| Nominal                                  |                  |
| White                                    | 2647             |
|                                          | 2011             |
| Nominal                                  | 40               |
| Mixed                                    | 49               |
| Nominal                                  |                  |
| South Asian                              | 340              |
| Nominal                                  |                  |
| Black                                    | 73               |
| Nominal                                  |                  |
| Index of multiple deprivation quantile 0 | 75               |
| Nominal                                  |                  |
| Index of multiple deprivation quantile 1 | 787              |
| Nominal                                  |                  |
| Index of multiple deprivation quantile 2 | 850              |
|                                          |                  |
| Nominal                                  | 000              |
| Index of multiple deprivation quantile 3 | 932              |
| Nominal                                  |                  |
| Index of multiple deprivation quantile 4 | 814              |
| Nominal                                  |                  |
| Index of multiple deprivation Quantile 5 | 731              |
| Nominal                                  |                  |
| Not obese                                | 2694             |
| Nominal                                  |                  |
|                                          |                  |

| Characteristic          | Study (N = 6899) |
|-------------------------|------------------|
| Obese I (BMI 30-34.9)   | 787              |
| Nominal                 |                  |
| Obese II (BMI 35-39.9)  | 411              |
| Nominal                 |                  |
| Obese III (BMI 40+)     | 297              |
| Nominal                 |                  |
| 0 comorbidities         | 2336             |
| Nominal                 |                  |
| 1 comorbidity           | 1335             |
| Nominal                 |                  |
| 2 or more comorbidities | 518              |
| Nominal                 |                  |
| 0 disorders             | 2772             |
| Nominal                 |                  |
| 1 or more disorders     | 1417             |
| Nominal                 |                  |

#### Outcomes Study timepoints

• 4 week (Duration of symptoms lasting 4 weeks or more from onset.)

Risk factors associated with symptoms lasting 4 weeks or more

| Outcome                                                   | 4 week, Risk factor vs<br>Reference |
|-----------------------------------------------------------|-------------------------------------|
| Female compared to males, longitudinal studies            | 1.49 (1.24 to 1.79)                 |
| Odds ratio/95% CI                                         |                                     |
| Female compared to males, electronic health records (EHR) | 1.51 (1.41 to 1.61)                 |
| Odds ratio/95% CI                                         |                                     |
| Longitudinal studies, non-white versus white              | 0.8 (0.54 to 1.19)                  |
| Odds ratio/95% CI                                         |                                     |
| EHR Mixed ethnicity versus white                          | 1.01 (0.76 to 1.34)                 |
| Odds ratio/95% CI                                         |                                     |
|                                                           |                                     |

COVID-19 rapid evidence review: Risk factors (November 2021)

 $\ensuremath{\mathbb{C}}$  NICE 2021. All rights reserved. Subject to Notice of rights.

| Outcome                                                                                | 4 week, Risk factor vs<br>Reference |
|----------------------------------------------------------------------------------------|-------------------------------------|
| EHR South Asian versus white                                                           | 0.75 (0.67 to 0.84)                 |
| Odds ratio/95% Cl                                                                      |                                     |
| EHR Black versus white                                                                 | 0.66 (0.52 to 0.66)                 |
| Odds ratio/95% Cl                                                                      |                                     |
| Index of Multiple Deprivation (IMD)                                                    |                                     |
| Longitudinal studies per 1 IMD point                                                   | 0.99 (0.95 to 1.03)                 |
| Odds ratio/95% Cl                                                                      |                                     |
| EHR IMD quintile 2 vs 1                                                                | 1.21 (1.09 to 1.33)                 |
| Odds ratio/95% Cl                                                                      |                                     |
| EHR IMD quintile 3 vs 1                                                                | 1.43 (1.3 to 1.57)                  |
| Odds ratio/95% CI                                                                      |                                     |
| EHR IMD quintile 4 vs 1                                                                | 1.36 (1.23 to 1.5)                  |
| Odds ratio/95% CI                                                                      |                                     |
| EHR IMD quintile 5 vs 1                                                                | 1.4 (1.27 to 1.55)                  |
| Odds ratio/95% CI                                                                      |                                     |
| <b>Poor overall health</b> self-rated health exposure in the LS meta-analysis, and con | morbidities in EHR                  |
| LS meta-analysis                                                                       | 1.62 (1.25 to 2.09)                 |
| Odds ratio/95% CI                                                                      |                                     |
| EHR                                                                                    | 1.26 (1.18 to 1.35)                 |
| Odds ratio/95% CI                                                                      |                                     |
| LS meta-analysis                                                                       | 1.46 (1.17 to 1.83)                 |
| Odds ratio/95% CI                                                                      |                                     |
| EHR                                                                                    | 1.57 (1.47 to 1.68)                 |
| Odds ratio/95% Cl                                                                      |                                     |
| Overweight and obesity                                                                 |                                     |
| LS meta-analysis                                                                       | 1.24 (1.01 to 1.53)                 |
|                                                                                        |                                     |
| Odds ratio/95% Cl                                                                      |                                     |

| Outcome           | 4 week, Risk factor vs<br>Reference |
|-------------------|-------------------------------------|
| EHR               | 1.31 (1.21 to 1.42)                 |
| Odds ratio/95% CI |                                     |
| Diabetes          |                                     |
| LS meta-analysis  | 1.38 (0.85 to 2.23)                 |
| Odds ratio/95% CI |                                     |
| EHR               | 1.05 (0.95 to 1.16)                 |
| Odds ratio/95% CI |                                     |
| Asthma            |                                     |
| LS meta-analysis  | 1.32 (1.07 to 1.62)                 |
| Odds ratio/95% CI |                                     |
| EHR               | 1.56 (1.46 to 1.67)                 |
| Odds ratio/95% CI |                                     |

Critical appraisal - ROBIS checklist: Signs, symptoms and risk

| Section                                 | Question                                                             | Answer   |
|-----------------------------------------|----------------------------------------------------------------------|----------|
| Study eligibility criteria              | Concerns regarding specification of study eligibility criteria       | Unclear  |
| Identification and selection of studies | Concerns regarding methods used to identify<br>and/or select studies | Unclear  |
| Data collection and study appraisal     | Concerns regarding methods used to collect data and appraise studies | Unclear  |
| Synthesis and findings                  | Concerns regarding the synthesis and findings                        | Unclear  |
| Overall study ratings                   | Overall risk of bias                                                 | Moderate |

## Ayoubkhani, 2021

**Bibliographic Reference** Ayoubkhani, Daniel; Khunti, Kamlesh; Nafilyan, Vahe; Maddox, Thomas; Humberstone, Ben; Diamond, Ian; Banerjee, Amitava; Post-covid syndrome in individuals admitted to hospital with COVID-19: retrospective cohort study.; BMJ (Clinical research ed.); 2021; vol. 372; n693

| Study details                    |                            |
|----------------------------------|----------------------------|
| Study design                     | Retrospective cohort study |
| Trial registration (if reported) | Not provided               |
| Study start date                 | 01-Jan-2020                |
| Study end date                   | 31-Aug-2020                |

| Aim of the study                  | To estimate the excess morbidity after severe COVID-19 disease, reflecting an urgent need for such evidence by policy makers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Country/ Geographical<br>location | UK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Study setting                     | We used the Hospital Episode Statistics Admitted Patient<br>Carerecords for England up to 31 August 2020 and the<br>General Practice Extraction Service Data for Pandemic<br>Planning and Research (GDPPR)18 up to 30 September<br>2020.<br>Death registrations from the Office for National Statistics were<br>linked for deaths up to 30 September 2020 and registered by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                   | 7 October 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Population description            | Individuals with COVID-19 after discharge from hospital.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Inclusion criteria                | Individuals were included if they had a hospital episode from 1<br>January to 31 August 2020 with a primary diagnosis of<br>COVID-19, (ICD-10) codes U07.1 (virus identified) and U07.2<br>(virus not identified); that is, by a positive laboratory test or<br>clinical diagnosis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Exclusion criteria                | Individuals with COVID-19 were excluded if they were not<br>discharged alive by 31 August 2020 or their date of birth or<br>sex was not known. The index date was set to the date of<br>discharge after the first hospital episode with COVID-19 as<br>the primary diagnosis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Intervention/test/approach        | Individuals were followed up from the index date to 30<br>September 2020 or the date of death (whichever was earlier)<br>for all cause mortality, all cause hospital readmission<br>(admission after discharge for patients and admission after<br>the index date for controls), respiratory disease, major<br>adverse cardiovascular event (a composite of heart failure,<br>myocardial infarction, stroke, and arrhythmia), diabetes (type<br>1 or 2), chronic kidney disease stages 3-5 (including dialysis<br>and kidney transplant), and chronic liver disease. Diagnoses<br>of respiratory disease, major adverse cardiovascular event,<br>diabetes, chronic kidney disease, and chronic liver disease<br>were identified from primary care and hospital records, except<br>for the arrhythmia component of major adverse cardiovascular<br>event for which primary care data were not available (although<br>diagnoses made in hospital were recorded). |
| Comparator (where<br>applicable)  | Candidate controls were individuals in the general population<br>who: did not meet the inclusion criteria for COVID-19; had not<br>died before 1 January 2020; and had at least one GDPPR<br>record between 1 January 2019 (one year before the start of<br>the follow-up period) and 30 September 2020 (end of the<br>study). They applied the GDPPR criterion to ensure the<br>controls were currently active patients within the NHS (eg,<br>they had not emigrated without deregistering from their<br>general practice). Each control had the same index date as<br>their matched patient. They selected controls from the general<br>population rather than matching to non-covid hospital                                                                                                                                                                                                                                                               |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                             | admissions to determine the increased risk after hospital<br>admission for COVID-19 versus no hospital admission for<br>COVID-19 (that is, compared with the expected risk for people<br>with similar personal and clinical characteristics in the general<br>population.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methods for population selection/allocation | They matched patients to controls on potential confounders of<br>the relation between hospital admission for COVID-19 and<br>outcomes, established from electronic health records over a<br>10 year look back period (1 January 2010 to 31 December<br>2019). Personal factors recorded were age, sex, ethnicity,<br>region, and deprivation. Comorbidities included the diagnoses<br>listed above and hypertension. and cancer, identified from<br>diagnoses made in primary care and in hospital (with primary<br>and secondary ICD10 codes for the hospital diagnoses). They<br>also included smoking status and body mass index in the<br>matching set as risk factors. They broadly categorised age<br>(<50, 50- 69, $\geq$ 70) and body mass index (<25, 25 to <30, $\geq$ 30)<br>to facilitate exact matching, which would not have been<br>possible with continuous variables. |
| Methods of data analysis                    | Distributions for baseline characteristics were compared between individuals with COVID-19 and a random 0.5% sample of the general population with $\chi 2$ tests and standardised differences in proportions, where a standardised difference or more than 10% indicated a large imbalance between groups.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                             | Patients were matched 1:1 to controls with coarsened exact<br>matching, resulting in a perfect balance of joint distributions<br>across the full range of (coarsened) variables included in the<br>matching set, derived from 10 years of records. Matched pairs<br>were discarded if the control died before the corresponding<br>patient's index date. All covariates were categorised before<br>matching, including an unknown category comprising<br>individuals with missing values. The size of the pool of<br>candidate controls (about 50 million individuals) precluded the<br>use of multiple imputation.                                                                                                                                                                                                                                                                    |
|                                             | They computed rates of death, readmission, and multiorgan dysfunction after discharge from hospital per 1000 person years in patients and controls, deriving rate ratios from these rates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                             | They estimated rates for all diagnoses (new onset diagnoses<br>and exacerbation of pre-existing conditions) and only new<br>onset diagnoses (that is, no previous diagnosis for the<br>condition over the 10 year look back period). All rates were<br>stratified by sex, age group (<70, $\geq$ 70), and ethnic group<br>(white, non-white). The threshold of 70 years was chosen for<br>age stratified analyses as the government of the United<br>Kingdom has consistently stated that individuals aged 70 or<br>more have a higher risk of severe illness from COVID-19 (eg,<br>in the government's definition of the clinically vulnerable<br>population in social distancing guidelines). Individuals with                                                                                                                                                                       |

|                             | missing information for ethnicity were omitted from all<br>analyses stratified by ethnic group. Patients were further<br>stratified based on whether they were admitted to an intensive<br>care unit during their hospital stay.<br>Sensitivity analysis investigated possible residual confounding<br>by age, smoking status, and body mass index after matching<br>because we had to use coarse versions of the variables to<br>ensure a sufficient match rate. They assessed the robustness<br>of our main results by adjusting for a second order polynomial<br>of age and non-coarsened versions of smoking status and<br>body mass index in a Poisson regression of outcome counts,<br>including the natural logarithm of person years as an offset<br>term. |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Attrition/loss to follow-up | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Summary of results          | Admission to hospital for covid-19COVID-19 was associated<br>with an increased risk of readmission and death after<br>discharge compared with individuals with similar personal and<br>clinical characteristics in the general population over the same<br>period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                             | After admission to hospital for covid-19COVID-19, 29% were readmitted and 12% died within a mean follow-up of 140 days.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                             | Rates of multiorgan dysfunction after discharge were raised in<br>individuals with covid-19COVID-19 compared with those in<br>the matched control group, suggesting extrapulmonary<br>pathophysiology. Diabetes and major adverse cardiovascular<br>events were particularly common, whether incident or<br>prevalent disease.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                             | Thirdly, the absolute risk of death, readmission, and<br>multiorgan dysfunction after discharge was greater for<br>individuals aged 70 or more than for those aged less than 70,<br>and for individuals of white ethnic background than non-white<br>individuals. Compared with outcome rates that might be<br>expected to occur in these groups in the general population,<br>however, younger patients and ethnic minority individuals had<br>greater relative risks than those aged 70 or more and those in<br>the white ethnic group, respectively.                                                                                                                                                                                                            |
|                             | In the secondary analysis, they found that individuals<br>discharged from the intensive care unit after covid-19COVID-<br>19 experienced greater rates of death and readmission than<br>those not admitted to the intensive care unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                             | Rates of all outcomes after discharge were greater in individuals with COVID-19 aged 70 or more than in those <70.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                             | Of 86 955 individuals in hospital with COVID-19 during the study period, 53,795 (61.9%) had been discharged alive by the end of the study. After excluding individuals whose age or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

sex was not known and those who could not be matched to a control, 47780 patients with COVID-19 (4745 admitted to the intensive care unit and 43,035 not requiring admission to the intensive care unit) were included in the analysis, representing 90.8% of those discharged alive with known age and sex. Mean follow-up was 140 days (standard deviation 50 days, maximum 253 days) for patients with COVID-19 and 153 days (33 days, 253 days) for controls.

At baseline, individuals with covid-19 had a mean age of 64.5 (standard deviation 19.2) and 54.9% were men. Compared with the general population, individuals in hospital with COVID-19 were more likely to be: male, aged 50 or more, living in a deprived area, a former smoker, and overweight or obese. Individuals with COVID-19 were also more likely to be comorbid than the general population, with a higher prevalence of previous admission to hospital and of all measured pre-existing conditions (most notably hypertension, major adverse cardiovascular event, respiratory disease, and diabetes).

Standardised differences in baseline characteristics between patients and controls were generally below 10%, and most were zero because of the use of exact matching. Individuals aged less than 30 and those whose smoking status or body mass index, or both, were not known, were more common in patients than in controls (as we matched on coarsened versions of these variables). Sensitivity analyses investigating the effect of adjusting for these variables showed minimal change in estimated rate ratios of multiorgan dysfunction between patients and controls, even when stratified by personal characteristics, indicating the absence of residual confounding after matching.

## Rates of death, readmission, and multiorgan dysfunction in individuals with covid-19 after discharge from hospital

Of 47,780 individuals in hospital with COVID-19 over the study period, 29.4% were readmitted and 12.3% died after discharge. These events occurred at rates of 766 (95% confidence interval 753 to 779) readmissions and 320 (312 to 328) deaths per 1000 person years, which were 3.5 (3.4 to 3.6) and 7.7 (7.2 to 8.3) times greater, respectively, than those in matched controls. Respiratory disease was diagnosed in 14,140 individuals (29.6%) after discharge, with 6085 of these being new onset diagnoses; the resulting rates of 770 (95% confidence interval 758 to 783) and 539 (525 to 553) per 1000 person years, respectively, were 6.0 (5.7 to 6.2) and 27.3 (24.0 to 31.2) times greater than those in controls.

Diabetes, major adverse cardiovascular event, chronic kidney disease, and chronic liver disease were diagnosed after

discharge in 4.9%, 4.8%, 1.5%, and 0.3% of individuals with COVID-19, respectively, occurring at rates of 127 (122 to 132) for diabetes, 126 (121 to 131) for major adverse cardiovascular event, 39 (36 to 42) for chronic kidney disease, and 7 (6 to 9) for chronic liver disease diagnoses per 1000 person years. The investigators saw a similar pattern when only new onset diagnoses were considered, but at lower rates of 29 (26 to 32) for diabetes, 66 (62 to 70) for major adverse cardiovascular event, 15 (13 to 17) for chronic kidney disease and 4 (3 to 5) for chronic liver disease diagnoses per 1000 person years. Those with COVID-19 were diagnosed with major adverse cardiovascular event, chronic liver disease, chronic kidney disease, and diabetes after discharge from hospital 3.0 (2.7 to 3.2), 2.8 (2.0 to 4.0), 1.9 (1.7 to 2.1), and 1.5 (1.4 to 1.6) times more frequently, respectively, than in the matched control group. Rates of death, readmission, and multiorgan dysfunction after discharge from hospital remained substantially increased in individuals with COVID-19 compared with matched controls, after stratifying by admission to the intensive care unit versus no admission to the intensive care unit. Individuals who needed to be admitted to the intensive care unit had higher rates of respiratory disease and diabetes after discharge, but lower rates of death, readmission, and major adverse cardiovascular event, than those who did not need to be admitted to the intensive care unit.

In sensitivity analyses, comparisons between outcome rates for patients and controls were robust when only laboratory confirmed diagnoses of COVID-19 were included, representing 80.2% of all patients with COVID-19 in the study. We also explored the robustness of our findings when 4865 patients with covid-19 (9.2%) that were unmatched, and therefore excluded from our main analysis, were added to the study population. The investigators found that outcome rates in the matched population could have slightly underestimated the rates in the full population of patients with COVID-19 who were discharged. The estimates presented in their main results could therefore be conservative.

# Rate ratios of death, readmission, and multiorgan dysfunction after discharge across demographic characteristics

Rates of all outcomes after discharge were greater in individuals with COVID-19 aged 70 or more than in those aged less than 70, whereas rates of all outcomes other than diabetes were greater in the white ethnic group than in the non-white group. Rate ratios comparing patients with COVID-19 and matched controls were greater in individuals aged less than 70 than those aged 70 or more for all outcomes, however. The largest differences in rate ratios were for death (14.1 (95% confidence interval 11.0 to 18.3) for age <70 years v 7.7 (7.1 to 8.3) for  $\geq$ 70) and respiratory disease (10.5 (9.7 to

|                                                 | 11.4) for age <70 v 4.6 (4.3 to 4.8) for $\geq$ 70). Ethnic differences<br>in rate ratios were greatest for respiratory disease (11.4 (9.8<br>to 13.3) for individuals in the non-white group v 5.2 (5.0 to 5.5)<br>in the white ethnic group). Differences in rate ratios between<br>men and women were generally small.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source of funding                               | The study received no external funding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Source of funding<br>Study limitations (Author) | Like all observational studies, residual confounding is<br>possible.<br>Limited events in the control group meant we could not<br>disaggregate rate ratios stratified by age and ethnicity beyond<br>age less than 70 versus 70 or older and white versus non-<br>white groups, despite likely variations in outcomes within<br>these groups.<br>Performing multiple imputation for missing values was not<br>practical because of the size of the study dataset; instead we<br>adopted the missing indicator approach, which could cause<br>some bias in non-randomised studies.<br>The hospital admission threshold might be lower in individuals<br>with recent COVID-19 disease than in the general population,<br>and rates of diagnoses in general might have decreased<br>indirectly because of the pandemic, particularly in people not<br>admitted to hospital with COVID-19.<br>They could not access testing data so some individuals with<br>COVID-19 who did not require admission to hospital might<br>have been matched in the control group.<br>Unlikely to fully capture the lived experiences of individuals<br>with post-COVID-19 syndrome who were possibly<br>asymptomatic and untested at the time of infection. |
|                                                 | Multiorgan post-covid manifestations have been identified in individuals not admitted to hospital, who were beyond the scope of our study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 | They did not capture symptoms such as fatigue, disturbances<br>in taste and smell, and anxiety, widely reported in post-covid<br>syndrome.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Study limitations<br>(Reviewer)                 | Nothing additional to add.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Study arms COVID-19 cases (N = 47780)

control group (N = 47780)

#### Characteristics Study-level characteristics

| Characteristic       | Study (N = 47780)    |
|----------------------|----------------------|
| Age                  | 64.5 (19.2)          |
| Mean (SD)            |                      |
| <b>Gender</b><br>Men | n = 26245 ; % = 54.9 |
| No of events         |                      |

Study timepoints

• 140 day (Mean follow up was 140 days)

Critical appraisal - CASP Critical appraisal checklist for cohort studies

| Section         | Question                | Answer                                                                                         |
|-----------------|-------------------------|------------------------------------------------------------------------------------------------|
| Overall<br>bias | Overall risk of<br>bias | High<br>(Retrospective cohort study with a matched control group.<br>Prone to selection bias.) |

## Taquet, 2021

**Bibliographic Reference** Taquet, Maxime; Geddes, John R; Husain, Masud; Luciano, Sierra; Harrison, Paul J; 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records.; The lancet. Psychiatry; 2021

### Study details

| Study design                      | Retrospective cohort study                                                                                                                                                                                                                                                                                                                                                      |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Trial registration (if reported)  | Not reported                                                                                                                                                                                                                                                                                                                                                                    |  |
| Study start date                  | 20-Jan-2020                                                                                                                                                                                                                                                                                                                                                                     |  |
| Study end date                    | 13-Dec-2020                                                                                                                                                                                                                                                                                                                                                                     |  |
| Aim of the study                  | They aimed to provide robust estimates of incidence rates and relative risks of neurological and psychiatric diagnoses in patients in the 6 months following a COVID-19 diagnosis.                                                                                                                                                                                              |  |
| Country/ Geographical<br>location | USA                                                                                                                                                                                                                                                                                                                                                                             |  |
| Study setting                     | A mixture of hospitals, primary care, and specialist providers.                                                                                                                                                                                                                                                                                                                 |  |
| Population description            | The primary cohort was defined as all patients who had a confirmed diagnosis of COVID-19. They also constructed two matched control cohorts: patients diagnosed with influenza and patients diagnosed with any respiratory tract infection including influenza. They excluded patients with a diagnosis of COVID-19 or a positive test for SARS-CoV-2 from the control cohorts. |  |

| Inclusion criteria         | As above for 'population description'. Also, the cohorts included all patients older than 10 years who had an index event on or after Jan 20, 2020 (the date of the first recorded COVID-19 case in the USA), and who were still alive at the time of the main analysis (Dec 13, 2020).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exclusion criteria         | As above for 'population description': They excluded patients<br>with a diagnosis of COVID-19 or a positive test for SARS-<br>CoV-2 from the control cohorts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            | For outcomes that are chronic illnesses (e.g. dementia or<br>Parkinson's disease), they excluded patients who had the<br>diagnosis before the index event.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Intervention/test/approach | They used a set of established and suspected risk factors for<br>COVID-19 and for more severe COVID-19 illness: age, sex,<br>race, ethnicity, obesity, hypertension, diabetes, chronic kidney<br>disease, asthma, chronic lower respiratory diseases, nicotine<br>dependence, substance use disorder, ischaemic heart<br>disease and other forms of heart disease, socioeconomic<br>deprivation, cancer (and haematological cancer in particular),<br>chronic liver disease, stroke, dementia, organ transplant,<br>rheumatoid arthritis, lupus, psoriasis, and disorders involving<br>an immune mechanism. To capture these risk factors in<br>patients' health records, they used 55 variables. Cohorts were<br>matched for all these variables.<br>For outcomes that tend to recur or relapse (eg, ischaemic<br>strokes or psychiatric diagnoses), they estimated separately<br>the incidence of first diagnoses (ie, excluding those who had a<br>diagnosis before the index event) and the incidence of any<br>diagnosis (ie, including patients who had a diagnosis at some<br>point before the index event). For other outcomes (eg,<br>Guillain-Barré syndrome), they estimated the incidence of any<br>diagnosis.<br>Finally, to assess the overall risk of neurological and<br>psychiatric outcomes after COVID-19, they estimated the<br>incidence of any of the 14 outcomes. This is lower than the<br>sum of incidences of each outcome because some patients<br>had more than one diagnosis.<br>They investigated whether the neurological and psychiatric<br>sequelae of COVID-19 were affected by the severity of the<br>illness. The incidence of outcomes was estimated separately<br>in four subgroups: first, in those who had required<br>hospitalisation within a time window from 4 days before their<br>COVID-19 diagnosis (taken to be the time it might take<br>between clinical presentation and confirmation) to 2 weeks<br>afterwards; second, in those who had not required<br>hospitalisation during that window; third, in those who had |
|                            | been admitted to an intensive therapy unit (ITU) during that<br>window; and fourth, in those who were diagnosed with<br>delirium or other forms of altered mental status during that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|                                             | window; we use the term encephalopathy to describe this group of patients.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             | Differences in outcome incidence between these subgroups<br>might reflect differences in their baseline characteristics.<br>Therefore, for each outcome, they estimated the HR between<br>patients requiring hospitalisation (or ITU) and a matched<br>cohort of patients not requiring hospitalisation (or ITU), and<br>between patients with encephalopathy and a matched cohort<br>of patients without encephalopathy. Finally, HRs were<br>calculated for patients who had not required hospitalisation for<br>COVID-19, influenza, or other respiratory tract infections.                                                                                                                                                                          |
|                                             | To provide benchmarks for the incidence and risk of<br>neurological and psychiatric sequelae, patients after COVID-<br>19 were compared with those in four additional matched<br>cohorts of patients diagnosed with health events selected to<br>represent a range of acute presentations during the same<br>time period. These additional four index events were skin<br>infection, urolithiasis, fracture of a large bone, and pulmonary<br>embolism.                                                                                                                                                                                                                                                                                                 |
|                                             | They assessed the robustness of the differences in outcomes<br>between cohorts by repeating the analysis in three scenarios:<br>one including patients who had died by the time of the<br>analysis, another restricting the COVID-19 diagnoses to<br>patients who had a positive RNA or antigen test (and using<br>antigen test as an index event), and another comparing the<br>rates of sequelae of patients with COVID-19 with those<br>observed in patients with influenza before the pandemic (ie, in<br>2019 or 2018).                                                                                                                                                                                                                            |
|                                             | Finally, to test whether differences in sequelae between<br>cohorts could be accounted for by differences in extent of<br>follow-up, we counted the average number of health visits that<br>each cohort had during the follow-up period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Comparator (where applicable)               | They constructed two matched control cohorts: patients diagnosed with influenza and patients diagnosed with any respiratory tract infection including influenza. They excluded patients with a diagnosis of COVID-19 or a positive test for SARS-CoV-2 from the control cohorts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Methods for population selection/allocation | They used The TriNetX Analytics Network, a federated<br>network recording anonymised data from electronic health<br>records in 62 health-care organisations, primarily in the USA,<br>comprising 81 million patients. The health-care organisations<br>are a mixture of hospitals, primary care, and specialist<br>providers, contributing data from uninsured and insured<br>patients. These organisations warrant that they have all<br>necessary rights, consents, approvals, and authority to<br>provide the data to TriNetX, so long as their name remains<br>anonymous as a data source and their data are used for<br>research purposes. By use of the TriNetX user interface,<br>cohorts can be created on the basis of inclusion and exclusion |

|                             | criteria, matched for confounding variables with a built-in propensity score-matching algorithm, and compared for outcomes of interest over specified time periods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methods of data analysis    | They used propensity score matching to create cohorts with matched baseline characteristics, done within the TriNetX network. Propensity score with 1:1 matching used a greedy nearest neighbour matching approach with a calliper distance of $0.1$ pooled SDs of the logit of the propensity score. Any characteristic with a standardised mean difference between cohorts lower than $0.1$ was considered well matched.20 The incidence of each outcome was estimated by use of the Kaplan-Meier estimator. Comparisons between cohorts were made with a log-rank test. We calculated HRs with 95% CIs using a proportional hazard model wherein the cohort to which the patient belonged was used as the independent variable. The proportional hazard assumption was tested with the generalised Schoenfeld approach. When the assumption was violated, the time varying HR was assessed with natural cubic splines fitted to the log cumulative hazard. Statistical analyses were done in R, version 3.4.3, except for the log-rank tests, which were done within TriNetX. Statistical significance was set at two-sided p-value <0.05. |
| Attrition/loss to follow-up | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Summary of results          | They assessed the probability of the major neurological and psychiatric outcomes in patients diagnosed with COVID-19 compared with the matched cohorts diagnosed with other respiratory tract infections and with influenza. Most diagnostic categories were more common in patients who had COVID-19 than in those who had influenza HR = $1.44 (1.40-1.47)$ for any diagnosis; HR = $1.78 (1.68-1.89)$ for any first diagnosis and those who had other respiratory tract infections HR = $1.16 (1.14-1.17)$ for any diagnosis; $1.32 (1.27-1.36)$ for any first diagnosis).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                             | Hazard rates were also higher in patients who were admitted<br>to ITU than in those who were not HR = 1.58 (1.50–1.67 for<br>any diagnosis; HR = 2.87 (2.45–3.35) for any first diagnosis).<br>HRs were significantly greater than 1 for all diagnoses for<br>patients who had COVID-19 compared with those who had<br>influenza, except for parkinsonism and Guillain-Barré<br>syndrome, and significantly greater than 1 for all diagnoses<br>compared with patients who had respiratory tract infections.<br>Similar results were observed when patients who had COVID-<br>19 were compared with those who had one of the four other<br>index events, except when an outcome had a predicted<br>relationship with the comparator condition (eg, intracranial<br>haemorrhage was more common in association with fracture<br>of a large bone).                                                                                                                                                                                                                                                                                              |
|                             | There were no violations of the proportional hazards<br>assumption for most of the neurological outcomes over the 6<br>months of follow-up (appendix pp 15, 35). The only exception<br>was for intracranial haemorrhage and ischaemic stroke in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

patients who had COVID-19 when compared with patients who had other respiratory tract infections (p=0.012 for intracranial haemorrhage and p=0.032 for ischaemic stroke). For the overall psychiatric disorder category (ICD-10 F20–48), the HR did vary with time, declining but remaining significantly higher than 1, indicating that the risk was attenuated but maintained 6 months after COVID-19 diagnosis. HRs for COVID-19 diagnosis compared with the additional four index events showed more variation with time, partly reflecting the natural history of the comparator condition (appendix, pp 16– 19, 36).

They explored the effect of COVID-19 severity in four ways. First, they restricted analyses to matched cohorts of patients who had not required hospitalisation. HRs remained significantly greater than 1 in this subgroup, with an overall HR for any diagnosis of 1.47 (1.44–1.51) for patients who had COVID-19 compared with patients who had influenza, and 1.16 (1.14–1.17) compared with those who had other respiratory tract infections. For a first diagnosis, the HRs were 1.83 (1.71–1.96) versus patients who had influenza and 1.28 (1.23–1.33) versus those who had other respiratory tract infections. Second, we calculated HRs for the matched cohorts of patients with COVID-19 requiring hospitalisation versus those who did not require hospitalisation (44,927 matched patients). This comparison showed greater hazard rates for all outcomes in the hospitalised group than in the non-hospitalised group, except for nerve, nerve root, or plexus disorders, with an overall HR of 1.33 (1.29–1.37) for any diagnosis and 1.70 (1.56–1.86) for any first diagnosis. Third, they calculated HRs for the matched cohorts of patients with COVID-19 requiring ITU admission versus those not requiring ITU admission (8942 patients), with a HR of 1.58 (1.50-1.67) for any diagnosis and 2.87 (2.45-3.35) for any first diagnosis. Fourth, we calculated HRs for the matched cohorts of patients with COVID-19 who had encephalopathy diagnosed during acute illness versus those who did not (6221 patients).

HRs for all diagnoses were greater for the group who had encephalopathy than for the matched cohort who did not, with an overall HR of 1.85 (1.73–1.98) for any diagnosis and 3.19 (2.54–4.00) for any first diagnosis.

They inspected other factors that might influence the findings. The results regarding hospitalisation, ITU admission, or encephalopathy (which they had defined as occurring up to 14 days after diagnosis) could be confounded by admissions due to an early complication of COVID-19 rather than to COVID-19 itself. This was explored by excluding outcomes during this period, with the findings remaining similar, albeit with many HRs being reduced. Additionally, COVID-19 survivors had fewer health-care visits during the 6-month period compared with the other cohorts. Hence the higher incidence of many diagnoses was not simply due to having had more diagnostic opportunities.

The increased rates of neurological and psychiatric sequelae were robust in all three sensitivity analyses: when patients who had died by the time of the analysis were included, when the COVID-19 diagnosis was confirmed by use of an RNA or antigen test, and when the sequelae were compared with those observed in patients who had influenza in 2019 or 2018.

The severity of COVID-19 had a clear effect on subsequent neurological diagnose. Overall, COVID-19 was associated with increased risk of neurological and psychiatric outcomes, but the incidences and HRs of these were greater in patients who had required hospitalisation, and markedly so in those who had required ITU admission or had developed encephalopathy, even after extensive propensity score matching for other factors (eg, age or previous cerebrovascular disease). However, the incidence and relative risk of neurological and psychiatric diagnoses were also increased even in patients with COVID-19 who did not require hospitalisation.

Some specific neurological diagnoses merit individual mention. The risk of cerebrovascular events (ischaemic stroke and intracranial haemorrhage) was elevated after COVID-19, with the incidence of ischaemic stroke rising to almost one in ten (or three in 100 for a first stroke) in patients with encephalopathy.

2.66% of patients older than 65 years and 4.72% who had encephalopathy received a first diagnosis of dementia within 6 months of having COVID-19.

Whether COVID-19 is associated with Guillain-Barré syndrome remains unclear - their data were equivocal, with HRs increased with COVID-19 compared with other respiratory tract infections but not with influenza, and increased compared with three of the four other index health events.

The findings regarding anxiety and mood disorders showed that the HR remained elevated, although decreasing, at the 6month period. They also observed a significantly increased risk of psychotic disorders. Substance use disorders and insomnia were also more common in COVID-19 survivors than in those who had influenza or other respiratory tract infections (except for the incidence of a first diagnosis of substance use disorder after COVID-19 compared with other respiratory tract infections). Therefore, as with the neurological outcomes, the psychiatric sequelae of COVID-19 appear widespread and to persist up to, and probably beyond, 6 months. Compared with neurological disorders, common

|                            | psychiatric disorders (mood and anxiety disorders) showed a<br>weaker relationship with the markers of COVID-19 severity in<br>terms of incidence or HRs. This might indicate that their<br>occurrence reflects, at least partly, the psychological and<br>other implications of a COVID-19 diagnosis rather than being<br>a direct manifestation of the illness. HRs for most neurological<br>outcomes were constant, and hence the risks associated with<br>COVID-19 persisted up to the 6-month timepoint.<br>They estimated the diagnostic incidence of the neurological<br>and psychiatric outcomes of the primary cohort in the 6<br>months after a COVID-19 diagnosis. In the whole cohort,<br>33.62% (33.17–34.07) of patients received a diagnosis. For<br>the cohort subgroups, these estimates were 38.73% (37.87–<br>39.60) for patients who were hospitalised, 46.42% (44.78–<br>48.09) for those admitted to ITU, and 62.34% (60.14–64.55)<br>for those diagnosed with encephalopathy. A similar, but more<br>marked, increasing trend was observed for patients receiving<br>their first recorded neurological or psychiatric diagnosis. |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source of funding          | NIHR Oxford Health Biomedical Research Centre.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Study limitations (Author) | Their findings have weaknesses inherent to an electronic<br>health records study, such as the unknown completeness of<br>records, no validation of diagnoses, and sparse information on<br>socioeconomic and lifestyle factors. These issues primarily<br>affect the incidence estimates, but the choice of cohorts<br>against which to compare COVID-19 outcomes influenced the<br>magnitude of the HRs. The analyses regarding<br>encephalopathy (delirium and related conditions) deserve a<br>note of caution. Even among patients who were hospitalised,<br>only about 11% received this diagnosis, whereas much higher<br>rates would be expected. Under-recording of delirium during<br>acute illness is well known and probably means that the<br>diagnosed cases had prominent or sustained features; as<br>such, results for this group should not be generalised to all<br>patients with COVID-19 who experience delirium.                                                                                                                                                                                                                   |
|                            | They also note that encephalopathy is not just a severity<br>marker but a diagnosis in itself, which might predispose to, or<br>be an early sign of, other neuropsychiatric or<br>neurodegenerative outcomes observed during follow-up.<br>The timing of index events was such that most infections with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | influenza and many of the other respiratory tract infections with<br>occurred earlier on during the pandemic, whereas the<br>incidence of COVID-19 diagnoses increased over time. The<br>effect of these timing differences on observed rates of<br>sequelae is unclear but, if anything, they are likely to make the<br>HRs an underestimate because COVID-19 cases were<br>diagnosed at a time when all other diagnoses were made at a<br>lower rate in the population. Some patients in the comparison<br>cohorts are likely to have had undiagnosed COVID-19; this<br>would also tend to make their HRs an underestimate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|                                 | Finally, a study of this kind can only show associations; efforts to identify mechanisms and assess causality will require prospective cohort studies and additional study designs. |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study limitations<br>(Reviewer) | Nothing further to add.                                                                                                                                                             |

Study arms Individuals who had COVID-19 (N = 236379)

Individuals who had influenza (N = 105579)

Individuals who had other respiratory tract infections (non-covid, but including influenza) (N = 236038)

| Study (N = 236379) |
|--------------------|
| 46 (19.7)          |
|                    |
| 55.6               |
|                    |
| 57.2               |
| 40.0               |
| 18.8               |
|                    |
| 16                 |
|                    |
| 18.1               |
|                    |
| 30                 |
|                    |
| 15.5               |
|                    |
| 10.6               |
|                    |
| 7.2                |
| 37 of 59           |
|                    |

COVID-19 rapid evidence review: Risk factors (November 2021)

© NICE 2021. All rights reserved. Subject to Notice of rights.

| Characteristic               | Study (N = 236379) |  |
|------------------------------|--------------------|--|
| Substance use disorder       | 10.5               |  |
| Nominal                      |                    |  |
| Ischaemic heart diseases     | 8.9                |  |
| Nominal                      |                    |  |
| Other forms of heart disease | 18                 |  |
| Nominal                      |                    |  |
| Chronic kidney disease       | 6.7                |  |
| Nominal                      |                    |  |
| Neoplasms                    | 19.1               |  |
| Nominal                      |                    |  |

Outcomes Study timepoints

• 180 day

Critical appraisal - CASP Critical appraisal checklist for cohort studies

| Section         | Question                | Answer                                                                                        |
|-----------------|-------------------------|-----------------------------------------------------------------------------------------------|
| Overall<br>bias | Overall risk of<br>bias | High<br>(Retrospective cohort study with matched control groups.<br>Prone to selection bias.) |

### Whitaker, 2021

Bibliographic<br/>ReferenceWhitaker M; Elliott J; Chadeau-Hyam M; Riley S; Darzi A; Cooke G;<br/>Ward H; Elliott P; Persistent symptoms following SARS-CoV-2 infection<br/>in a random community sample of 508,707 people; 2021

| Study details                                                         |                                                                                                                                                                                                          |       |  |  |  |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| Study design                                                          | Retrospective cohort study                                                                                                                                                                               |       |  |  |  |
| Aim of the study                                                      | To estimate symptom prevalence and investigate co-<br>occurrence of symptoms among participants in the comm<br>reporting symptoms lasting 12 weeks or more following<br>suspected or confirmed COVID-19. | unity |  |  |  |
| Country/ Geographical<br>location                                     | UK                                                                                                                                                                                                       |       |  |  |  |
| Study setting                                                         | Community: Random population sample of adults in England who had COVID-19.                                                                                                                               |       |  |  |  |
| Population description                                                | Adults in the community who had COVID-19 in the past.                                                                                                                                                    |       |  |  |  |
| Inclusion criteria Same as above.                                     |                                                                                                                                                                                                          |       |  |  |  |
| COVID-19 rapid evidence review: Risk factors (November 2021) 38 of 59 |                                                                                                                                                                                                          |       |  |  |  |

© NICE 2021. All rights reserved. Subject to Notice of rights.

| Exclusion criteria                          | Individuals who had missing data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Intervention/test/approach                  | Random population samples of adults in England were invited<br>to take part every 2–4 months using the National Health<br>Service (NHS) patient list to achieve similar numbers of<br>participants in each of 315 lower-tier local authority (LTLA)<br>areas. Participants registered via an online portal or by<br>telephone. Those registered were sent a test kit by post that<br>included a self-administered point-of-care lateral flow<br>immunoassay (LFIA) test with instructions and a link to an<br>online video. Participants completed a survey<br>(online/telephone) upon completion of their self-test.<br>Participants provided information on demographics,<br>household composition, whether or not they thought that they<br>had had COVID-19, whether or not they had had a PCR test,<br>co-morbidities, symptoms related to COVID-19, severity of<br>symptoms, and duration of any of a list of 29 symptoms.18 In<br>addition, we asked participants to report any other symptoms<br>in free text. Personalised invitations were sent to between<br>560,000 and 600,000 individuals aged 18 years and above in<br>each of rounds three to five of the REACT-2 study, carried out<br>from 15 to 28 September 2020 (round 3), 27 October to 10<br>November 2020 (round 4) and 25 January to 8 February 2021<br>(round 5). Registrations closed after ~190,000 people had<br>signed up at each round. |  |  |  |  |
| Comparator (where applicable)               | There was no comparator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Methods for population selection/allocation | As above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Methods of data analysis                    | They obtained prevalence estimates for reporting of one or<br>more of the 29 symptoms by sex, age and other<br>characteristics, at time of suspected or confirmed COVID-19,<br>and for persistence of symptoms at four and 12 weeks. Their<br>main analyses focused on individual symptoms reported as<br>lasting for 12 weeks (84 days) or more. Prevalence estimates<br>were weighted by sex, age, ethnicity, LTLA population and<br>index of multiple deprivation, to take account of the sampling<br>design that gave approximately equal numbers of participants<br>in each LTLA, and differential response rates, to obtain<br>prevalence estimates that were representative of the<br>population of England as a whole.<br>They used logistic regression (univariable, and sex, age<br>adjusted) to investigate the associations of demographic and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                             | lifestyle factors with persistence of symptoms at 12 weeks or<br>more, and gradient boosted tree models to investigate<br>predictive ability (area under the curve, AUC) changes from<br>adding variables to the model for persistent symptoms at 12<br>weeks or more.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                             | To identify a more specific set of persistent symptoms associated with history of COVID-19, in sensitivity analyses, they carried out variable selection in a 30% subset of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |

symptomatic participants: in univariable models, they identified a subset of persistent symptoms (12 or more weeks) that were positively associated with a reported prior positive PCR test, and estimated the population prevalence of persistence of one or more of these symptoms. They also repeated the logistic and gradient boosted tree modeling with this subset of symptoms as outcome variables.

Generalised additive models (GAMs) were constructed with likelihood of symptom persistence at 12 weeks or more modelled as a smoothed function of sex and age. A default thin plate spline was used and the smoothed functions were plotted to visualise the relationship between risk of persistent symptoms and age.

They used free-text analysis to identify single and cooccurring words to indicate other symptoms recorded by participants, and plotted these in a network.

To identify symptom clusters segmenting participants, two binary matrices were constructed for presence or absence (1 or 0) of each of the 29 surveyed symptoms at (i) time of symptom onset and (ii) 12 weeks after, for each participant. Clustering was performed, separately, both row-wise (to identify groups of participants with similar symptoms) and column-wise (to group symptoms based on their cooccurrence) using the CLustering LARge Applications (CLARA) extension of the Partitioning Around Medoids (PAM) algorithm, implemented in the R package fpc.20 Briefly, PAM searches for the most representative data points to become cluster centroids by minimising the sum of dissimilarities between data points and their assigned centroids. CLARA uses a sampling approach to reduce the computational burden for large data sets. They used Hamming distance as a measure of dissimilarity between participants (row-wise clustering) and symptoms (column-wise clustering). They determined the optimal number of clusters using the average silhouette width. They used two methods to assess cluster stability. First, they bootstrapped and re-clustered 100 times, then quantified the difference between bootstrapped and nonbootstrapped clusters using the Jaccard coefficient, which can range from 0 (no overlap) to 1 (perfect overlap). Second, they removed each symptom in turn, re-clustered, then calculated the average proportion of non-overlap (APN) between these and whole-dataset clusters as a proxy for the individual variable importance and contribution to the population segmentation.

To further describe patterns of symptom co-occurrence, they took the cross-product of the symptom matrix at symptom onset and at 12 weeks to find pairwise symptom cooccurrence counts, and visualised them as heatmaps.

#### Attrition/loss to follow-up None

The proportion of people with one or multiple symptoms declined over time since infection. There was a rapid drop-off by four weeks, a further, smaller drop by 12 weeks, but then little evidence of further decline over time up to ~22 weeks for both men and women, with higher prevalence of symptoms at each time point among women.

### Factors associated with persistent symptoms

Among symptomatic people, the persistence of one or more symptoms for 12 weeks or more was higher in women than men (age-adjusted OR: 1.51 [1.46,1.55]), and increased with age, with a linear increase of 3.5 percentage points per decade of life. With adjustment for sex and age, persistent symptoms were associated with self-reported overweight (OR: 1.16 [1.12, 1.21]) and obesity (OR: 1.53 [1.47,1.59]) compared with normal weight individuals, smoking (OR: 1.35 [1.28,1.41]), vaping (OR: 1.26 [1.18,1.34]) and hospitalisation with COVID-19 (OR: 3.46 [2.93,4.09]), while Asian ethnicity (OR: 0.80 [0.74,0.88]) was associated with lower risk of persistent symptoms compared to people of white ethnicity.

There was a higher proportion with persistent symptoms among those with low incomes at 51.0% (49.5, 52.4) compared with high incomes at 28.7% (27.2, 30.4) and among people living in the most deprived areas at 42.6% (41.5, 43.6) compared with the most affluent areas at 34.7% (34.0, 35.3).

Prevalence of persistent symptoms at 12 or more weeks was around 50% or more among people reporting co-morbidities, ranging up to 67.9% (65.6,70.1) for "other lung condition".

In addition to the 29 symptoms enquired about on the questionnaire, 8,370 respondents gave free-text descriptions of other symptoms, of whom 1,860 reported symptoms that persisted for 12 weeks or more. Free-text analysis of co-occurring words indicated common additional symptoms which were not in our survey, including brain-fog, hair-loss, blood-pressure, heart-palpitations, severe-joint-pain.

### **Clustering analysis**

|                            | In clustering analysis, two stable clusters of participants were identified based on symptom profiles at 12 weeks. Participants in Cluster L1 ("tiredness cluster") experienced high prevalence of tiredness, which co-occurred with muscle aches, difficulty sleeping and shortness of breath. Participants in Cluster L2 ("respiratory cluster") experienced high prevalence of respiratory symptoms including shortness of breath and tight chest, as well as chest pain. A higher proportion of people in the respiratory cluster reported severe symptoms at the time of their COVID-19 illness (43.5%, [42.0,44.9]) than in the tiredness cluster (27.4%, [26.7,28.1]). |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | Participants reported high prevalence of persistent symptoms<br>lasting 12 weeks or more. Estimates ranged from 5.8% of the<br>population experiencing one or more persistent symptoms<br>post-COVID-19 (corresponding to over 2 million adults in<br>England), to 2.2% for three or more persistent symptoms (just<br>under a million adults in England), and 1.7% with one or more<br>symptoms lasting at least 12 weeks in people who reported<br>severe COVID-19 symptoms affecting their daily life at the<br>time of their illness.                                                                                                                                     |
|                            | They found a linear association between age and persistent<br>symptoms in people with symptomatic COVID-19. Their<br>finding is conditional on symptomatic COVID-19, reflecting the<br>fact that older age groups in the community have lower<br>infection rates than younger people and are more likely to be<br>asymptomatic. Their identification of two stable and well-<br>differentiated symptom clusters at 12 weeks supports the<br>characterisation of Long COVID as a diverse set of<br>overlapping conditions.                                                                                                                                                     |
| Source of funding          | Department of Health and Social Care in England.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Study limitations (Author) | Their open free-text question identified a number of symptoms<br>not included in their questionnaire including "brain fog",<br>"palpitations" and "hair loss". However, as the study was<br>based on self-reported data and because many of the<br>symptoms are common and not specific to COVID-19, they<br>may have overestimated the prevalence of persistent<br>symptoms.                                                                                                                                                                                                                                                                                                 |
|                            | A further limitation is the retrospective study design, which<br>introduces the possibility of recall bias. Nonetheless, in earlier<br>analyses they have shown that participant reports of date of                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|                                                                                           | onset of their s<br>closely tracks t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | symptoms produce an epidemic c<br>the epidemic. | urve that very |  |  |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------|--|--|
|                                                                                           | Respondents were restricted to reporting a single date of<br>(initial) symptom onset which does not allow for delayed onse<br>of some symptoms, nor does it allow for the reporting of<br>relapsing symptoms which appear to be a feature of Long<br>COVID. A further limitation, despite the high response rate for<br>a community surveillance study, is the possibility of<br>participation bias as the REACT-2 study included a home<br>antibody self-test; it is plausible that people with persistent<br>symptoms may have been more likely to participate in order to<br>ascertain their antibody status. |                                                 |                |  |  |
| Study limitations<br>(Reviewer)                                                           | Nothing further                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r to add.                                       |                |  |  |
| Study arms<br>Individuals who had COVII<br>Characteristics<br>Study-level characteristics | D-19 (N = 5087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 707)                                            |                |  |  |
| Characteristic                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Study (N =</b> 28713)                        |                |  |  |
| Age 18-24 years                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.2                                            |                |  |  |
| % symptomatic                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |                |  |  |
| • •                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.9                                            |                |  |  |
| % symptomatic                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |                |  |  |
| Age 35-44 years                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.7                                            |                |  |  |
| % symptomatic                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.4                                            |                |  |  |
| Age 45-54 years<br>% symptomatic                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39.1                                            |                |  |  |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42.7                                            |                |  |  |
| % symptomatic                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |                |  |  |
| Age 65-74 years                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.3                                            |                |  |  |
| % symptomatic                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |                |  |  |
| Age 74+ years                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.8                                            |                |  |  |
| % symptomatic                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |                |  |  |
| % Female                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |                |  |  |
| Nominal                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |                |  |  |
| Asian                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.2                                            |                |  |  |
| COVID-19 rapid evidence review: F                                                         | Risk factors (Novem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ber 2021)                                       | 43 of 59       |  |  |

 $\ensuremath{\mathbb{C}}$  NICE 2021. All rights reserved. Subject to Notice of rights.

| Characteristic | <b>Study (N =</b> 28713) |
|----------------|--------------------------|
| % symptomatic  |                          |
| Black          | 37.6                     |
| % symptomatic  |                          |
| Mixed          | 39.1                     |
| % symptomatic  |                          |
| Other          | 37.7                     |
| % symptomatic  |                          |
| White          | 37.9                     |
| % symptomatic  |                          |

Outcomes Study timepoints

• 12 week

Critical appraisal - CASP Critical appraisal checklist for cohort studies

| Section | Question        | Answer                                                                 |
|---------|-----------------|------------------------------------------------------------------------|
| Overall | Overall risk of | High                                                                   |
| bias    | bias            | (Retrospective cohort study. Prone to selection bias and recall bias.) |

## Appendix 7 GRADE profiles

### Risk factors: Adults experiencing symptoms beyond the duration of acute COVID-19

| Certainty assessment                      |                              |                      |              | Summary of findings |                     |                                        |                                      |
|-------------------------------------------|------------------------------|----------------------|--------------|---------------------|---------------------|----------------------------------------|--------------------------------------|
| Participants<br>(studies)<br>Follow-up    | Risk of<br>bias              | Inconsistency        | Indirectness | Imprecision         | Publication<br>bias | Overall<br>certainty<br>of<br>evidence | Impact                               |
| Risk factor: Fe                           | male sex                     | (follow-up: 4 wee    | eks)         |                     |                     |                                        |                                      |
| 6525<br>(9<br>observational<br>studies)   | very<br>seriousª             | serious <sup>b</sup> | not serious  | not serious         | none                | Very low                               | Odds ratio 1.49 (Cl 95% 1.24 — 1.79) |
| Risk factor: Ho                           | ospitalisati                 | on (follow-up: 12    | weeks)       |                     |                     |                                        |                                      |
| (1<br>observational<br>study)             | very<br>serious°             | not serious          | not serious  | not serious         | none                | Low                                    | Odds ratio 3.46 (Cl 95% 2.93 — 4.09) |
| Risk factor: Vaping (follow-up: 12 weeks) |                              |                      |              |                     |                     |                                        |                                      |
| (1<br>observational<br>study)             | very<br>serious <sup>c</sup> | not serious          | not serious  | not serious         | none                | Low                                    | Odds ratio 1.26 (CI 95% 1.18 — 1.34) |

Risk factor: Smoking (follow-up: 12 weeks)

COVID-19 rapid evidence review: risk factors (August 2021)

|                               |                              | Cert        | ainty assessm | Summary of findings |      |     |                                      |
|-------------------------------|------------------------------|-------------|---------------|---------------------|------|-----|--------------------------------------|
| (1<br>observational<br>study) | very<br>serious <sup>c</sup> | not serious | not serious   | not serious         | none | Low | Odds ratio 1.35 (Cl 95% 1.28 — 1.41) |

Risk factor: Obesity (follow-up: 12 weeks)

| 0             | very                 | not serious | not serious | not serious | none |     | Odds ratio 1.53 (Cl 95% 1.47 — 1.59) |
|---------------|----------------------|-------------|-------------|-------------|------|-----|--------------------------------------|
| (1            | serious <sup>c</sup> |             |             |             |      | Low |                                      |
| observational |                      |             |             |             |      |     |                                      |
| study)        |                      |             |             |             |      |     |                                      |

Risk factor: Female sex (follow-up: 12 weeks)

|               | very                 | not serious | not serious | not serious | none |          | Odds ratio 1.51 (Cl 95% 1.46 — 1.55) |
|---------------|----------------------|-------------|-------------|-------------|------|----------|--------------------------------------|
| (1            | serious <sup>c</sup> |             |             |             |      | Very low |                                      |
| observational |                      |             |             |             |      |          |                                      |
| study)        |                      |             |             |             |      |          |                                      |

Risk factor: Non-white ethnicity (follow-up: 4 weeks)

| 5607         | very                 | not serious | not serious | serious <sup>d</sup> | none | Mamilaw  | Odds ratio 0.80 (CI 95% 0.54 — 1.19) |
|--------------|----------------------|-------------|-------------|----------------------|------|----------|--------------------------------------|
| observationa | serious <sup>a</sup> |             |             |                      |      | Very low |                                      |
| studies)     |                      |             |             |                      |      |          |                                      |

Risk factor: Asian ethnicity (follow-up: 12 weeks)

| study) | observational | very<br>serious <sup>c</sup> | not serious | not serious | not serious | none | Very low | Odds ratio 0.80 (CI 95% 0.74 — 0.88) |
|--------|---------------|------------------------------|-------------|-------------|-------------|------|----------|--------------------------------------|
|--------|---------------|------------------------------|-------------|-------------|-------------|------|----------|--------------------------------------|

Risk factor: Poor pre-pandemic mental health (follow-up: 4 weeks)

COVID-19 rapid evidence review: risk factors (August 2021)

|                                         |                  | Cert        | ainty assessm | Summary of findings |      |          |                                      |
|-----------------------------------------|------------------|-------------|---------------|---------------------|------|----------|--------------------------------------|
| 5467<br>(9<br>observational<br>studies) | very<br>seriousª | not serious | not serious   | not serious         | none | Very low | Odds ratio 1.46 (Cl 95% 1.17 — 1.83) |

Risk factor: Poor general health (follow-up: 4 weeks)

| 4429          | very                 | not serious | not serious | not serious | none |          | Odds ratio 1.62 (CI 95% 1.25 — 2.09) |
|---------------|----------------------|-------------|-------------|-------------|------|----------|--------------------------------------|
| (7            | serious <sup>a</sup> |             |             |             |      | Very low |                                      |
| observational |                      |             |             |             |      |          |                                      |
| studies)      |                      |             |             |             |      |          |                                      |

Risk factor: Asthma (follow-up: 4 weeks)

| 4525<br>(9          | very                 | not serious | not serious | not serious | none | Vonulow  | Odds ratio 1.32 (CI 95% 1.07 — 1.62) |
|---------------------|----------------------|-------------|-------------|-------------|------|----------|--------------------------------------|
| (9<br>observational | serious <sup>a</sup> |             |             |             |      | Very low |                                      |
| studies)            |                      |             |             |             |      |          |                                      |

Risk factor: Overweight or obese (follow-up: 12 weeks)

| 4327          | very                 | not serious | not serious | not serious | none |          | Odds ratio 1.25 (Cl 95% 1.01 — 1.55) |
|---------------|----------------------|-------------|-------------|-------------|------|----------|--------------------------------------|
| (8            | serious <sup>a</sup> |             |             |             |      | Very low |                                      |
| observational |                      |             |             |             |      |          |                                      |
| studies)      |                      |             |             |             |      |          |                                      |

Risk factor: Overweight (follow-up: 12 weeks)

| (1<br>observational<br>study) | very not serious<br>serious <sup>c</sup> | not serious | not serious | none | Very low | Odds ratio 1.16 (CI 95% 1.12 — 1.21) |
|-------------------------------|------------------------------------------|-------------|-------------|------|----------|--------------------------------------|
|-------------------------------|------------------------------------------|-------------|-------------|------|----------|--------------------------------------|

CI: confidence interval; OR: odds ratio

### Explanations

COVID-19 rapid evidence review: risk factors (August 2021)

a. Risk of bias assessment not reported but most studies used self-reported outcomes that increases recall bias.

- b. Significant heterogeneity (I2 >50%)
  c. Study rated as high risk of bias due to the retrospective study design and high probability of recall bias
  d. 95% CI crosses the line of no effect

# Appendix 8 Excluded studies

| Study                                                                                       | Reason for exclusion                    |
|---------------------------------------------------------------------------------------------|-----------------------------------------|
| Addison, Alfred B, Wong, Billy, Ahmed, Tanzime                                              | - Indirect evidence                     |
| et al. (2021) Clinical Olfactory Working Group                                              |                                         |
| Consensus Statement on the Treatment of Post                                                |                                         |
| Infectious Olfactory Dysfunction. The Journal of                                            |                                         |
| allergy and clinical immunology                                                             |                                         |
| Aemaz Ur Rehman, Muhammad, Farooq,                                                          | - Covered in included systematic review |
| Hareem, Ali, Muhammad Mohsin et al. (2021)                                                  |                                         |
| The Association of Subacute Thyroiditis with                                                |                                         |
| COVID-19: a Systematic Review. SN                                                           |                                         |
| comprehensive clinical medicine: 1-13                                                       |                                         |
| Al-Aly, Ziyad; Xie, Yan; Bowe, Benjamin (2021)                                              | - Covered in included systematic review |
| High-dimensional characterization of post-acute                                             |                                         |
| sequalae of COVID-19. Nature                                                                |                                         |
| Alemanno, Federica, Houdayer, Elise, Parma,                                                 | -Sample size less than 10,000           |
| Anna et al. (2021) COVID-19 cognitive deficits                                              |                                         |
| after respiratory assistance in the subacute                                                |                                         |
| phase: A COVID-rehabilitation unit experience.                                              |                                         |
| PloS one 16(2): e0246590                                                                    |                                         |
| Aminian, Ali, Bena, James, Pantalone, Kevin M                                               | - Sample size less than 10,000          |
| et al. (2021) Association of Obesity with Post-                                             |                                         |
| Acute Sequelae of COVID-19 (PASC).                                                          |                                         |
| Diabetes, obesity & metabolism                                                              |                                         |
| Arnold David, T, Milne, Alice, Stadon, Louise et                                            | - Duplicate                             |
| al. Are vaccines safe in patients with Long                                                 |                                         |
| COVID? A prospective observational study.                                                   |                                         |
| medrxiv preprint                                                                            | Semale size less then 10 000            |
| Augustin, Max, Schommers, Philipp, Stecher,<br>Melanie et al. (2021) Post-COVID syndrome in | - Sample size less than 10,000          |
| non-hospitalised patients with COVID-19: a                                                  |                                         |
| longitudinal prospective cohort study. The                                                  |                                         |
| Lancet regional health. Europe 6: 100122                                                    |                                         |
| Augustin, Max, Schommers, Philipp, Stecher,                                                 | - Duplicate                             |
| Melanie et al. Recovered not restored: Long-                                                | Duplicato                               |
| term health consequences after mild COVID-19                                                |                                         |
| in non-hospitalized patients. medrxiv preprint                                              |                                         |
| Badenoch James, B, Rengasamy Emma, R,                                                       | - Covered in included systematic review |
| Watson Cameron, J et al. Persistent                                                         | ,                                       |
| neuropsychiatric symptoms after COVID-19: a                                                 |                                         |
| systematic review and meta-analysis. medrxiv                                                |                                         |
| preprint                                                                                    |                                         |
| Baricich, Alessio, Borg, Margherita B, Cuneo,                                               | - Sample size less than 10,000          |
| Daria et al. (2021) Midterm functional sequelae                                             |                                         |
| and implications in rehabilitation after COVID19.                                           |                                         |
| A cross-sectional study. European journal of                                                |                                         |
| physical and rehabilitation medicine                                                        |                                         |
| Bell Melanie, L, Catalfamo Collin, J, Farland                                               | - Sample size less than 10,000          |
| Leslie, V et al. Post-acute sequelae of COVID-                                              |                                         |
| 19 in a non-hospitalized cohort: results from the                                           |                                         |
| Arizona CoVHORT. medrxiv preprint                                                           | • • • • •                               |
| Bellan, Mattia, Soddu, Daniele, Balbo, Piero                                                | - Sample size less than 10,000          |
| Emilio et al. (2021) Respiratory and                                                        |                                         |
| Psychophysical Sequelae Among Patients With                                                 |                                         |
| COVID-19 Four Months After Hospital                                                         |                                         |
| Discharge. JAMA network open 4(1): e2036142                                                 |                                         |

| Biadsee, Ameen, Dagan, Or, Ormianer, Zeev et<br>al. (2021) Eight-month follow-up of olfactory and<br>gustatory dysfunctions in recovered COVID-19<br>patients. American journal of otolaryngology<br>42(4): 103065                                                                         | - Sample size less than 10,000                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Brackel, Caroline L H, Lap, Coen R, Buddingh,<br>Emilie P et al. (2021) Pediatric long-COVID: An<br>overlooked phenomenon?. Pediatric<br>pulmonology                                                                                                                                       | - Duplicate                                                 |
| Bultas, Margaret W and Fuller, Kelli (2021)<br>Multisystem Inflammatory Syndrome in Children<br>and COVID-19 Infections. NASN school nurse<br>(Print): 1942602x211021136                                                                                                                   | - Study design: Narrative review with no data               |
| Bultas, Margaret W and Fuller, Kelli (2021)<br>Multisystem Inflammatory Syndrome in Children<br>and COVID-19 Infections. NASN school nurse<br>(Print): 1942602x211021136                                                                                                                   | - Study design: Narrative review with no data               |
| Cabrera Martimbianco, Ana Luiza, Pacheco,<br>Rafael Leite, Bagattini, Angela Maria et al.<br>(2021) Frequency, signs and symptoms, and<br>criteria adopted for long COVID: a systematic<br>review. International journal of clinical practice:<br>e14357                                   | - Duplicate                                                 |
| Cabrera Martimbianco, Ana Luiza, Pacheco,<br>Rafael Leite, Bagattini, Angela Maria et al.<br>(2021) Frequency, signs and symptoms, and<br>criteria adopted for long COVID-19: A<br>systematic review. International Journal of<br>Clinical Practice                                        | - Covered in included systematic review                     |
| Carenzo, Luca, Dalla Corte, Francesca, Haines,<br>Ryan W et al. (2021) Return to Work After<br>Coronavirus Disease 2019 Acute Respiratory<br>Distress Syndrome and Intensive Care<br>Admission: Prospective, Case Series at 6<br>Months From Hospital Discharge. Critical care<br>medicine | - Study design: Case series (Prevalence)                    |
| Cennamo, Gilda, Reibaldi, Michele, Montorio,<br>Daniela et al. (2021) Optical coherence<br>tomography angiography features in post<br>COVID-19 pneumonia patients: a pilot study.<br>American journal of ophthalmology                                                                     | - Scoping assessment - no impact on current recommendations |
| Chowdhury Zahin, Amin-Chowdhury, Harris<br>Ross, J, Aiano, Felicity et al. Characterising long<br>COVID more than 6 months after acute infection<br>in adults; prospective longitudinal cohort study,<br>England. medrxiv preprint                                                         | - Sample size less than 10,000                              |
| Clarke, Jonathan, Flott, Kelsey, Crespo<br>Roberto, Fernandez et al. Assessing the Safety<br>of Home Oximetry for Covid-19: A multi-site<br>retrospective observational study. medrxiv<br>preprint                                                                                         | - Population: Acute Covid-19                                |
| Collaborative - The, OpenSAFELY, Walker Alex,<br>J, MacKenna, Brian et al. Clinical coding of long<br>COVID in English primary care: a federated<br>analysis of 58 million patient records in situ<br>using OpenSAFELY. medrxiv preprint                                                   | - Not relevant to review protocols                          |
| Cousyn, L, Sellem, B, Palich, R et al. (2021)<br>Olfactory and gustatory dysfunctions in COVID-                                                                                                                                                                                            | - Sample size less than 10,000                              |

| 19 outpatients: a prospective cohort study.                                                 |                                             |
|---------------------------------------------------------------------------------------------|---------------------------------------------|
| Infectious diseases now                                                                     | Chudu designs Conference                    |
| D'Cruz, R.F., Perrin, F., Waller, M. et al. (2021)                                          | - Study design: Conference abstract         |
| Clinical, radiological, functional and psychological characteristics of severe COVID-       |                                             |
| 19 pneumonia survivors: A prospective                                                       |                                             |
| observational cohort study. Thorax 76(suppl1):                                              |                                             |
| a34-a35                                                                                     |                                             |
| Damanti, Sarah, Ramirez, Giuseppe Alvise,                                                   | - Sample size less than 10,000              |
| Bozzolo, Enrica Paola et al. (2021) 6-Month                                                 |                                             |
| Respiratory Outcomes and Exercise Capacity of                                               |                                             |
| COVID-19 Acute Respiratory Failure Patients                                                 |                                             |
| Treated With CPAP. Internal medicine journal                                                |                                             |
| DARLEY David, R, Dore, Gregory, Byrne,                                                      | - Sample size less than 10,000              |
| Anthony et al. Limited recovery from post-acute                                             | - ,                                         |
| sequelae of SARS-CoV-2 (PASC) at eight                                                      |                                             |
| months of a prospective cohort. medrxiv preprint                                            |                                             |
| Daugherty, Sarah E, Guo, Yinglong, Heath,                                                   | - Covered within included primary study     |
| Kevin et al. (2021) Risk of clinical sequelae after                                         |                                             |
| the acute phase of SARS-CoV-2 infection:                                                    |                                             |
| retrospective cohort study. BMJ (Clinical                                                   |                                             |
| research ed.) 373: n1098                                                                    |                                             |
| Davis Hannah, E, Assaf Gina, S, McCorkell,                                                  | - Sample size less than 10,000              |
| Lisa et al. Characterizing Long COVID in an                                                 |                                             |
| International Cohort: 7 Months of Symptoms                                                  |                                             |
| and Their Impact. medrxiv preprint                                                          |                                             |
| Daynes, Enya, Gerlis, Charlotte, Chaplin, Emma                                              | - Intervention: Rehabilitation on discharge |
| et al. Early experiences of rehabilitation for                                              |                                             |
| patients post-COVID to improve fatigue,                                                     |                                             |
| breathlessness exercise capacity and cognition.<br>medrxiv preprint                         |                                             |
| Daynes, Enya, Gerlis, Charlotte, Chaplin, Emma                                              | - Intervention: Rehabilitation on discharge |
| et al. (2021) Early experiences of rehabilitation                                           | - Intervention. Renabilitation on discharge |
| for individuals post-COVID to improve fatigue,                                              |                                             |
| breathlessness exercise capacity and cognition                                              |                                             |
| - A cohort study. Chronic respiratory disease 18:                                           |                                             |
| 14799731211015691                                                                           |                                             |
| Dennis, Andrea, Wamil, Malgorzata, Alberts,                                                 | - Sample size less than 10,000              |
| Johann et al. (2021) Multiorgan impairment in                                               |                                             |
| low-risk individuals with post-COVID-19                                                     |                                             |
| syndrome: a prospective, community-based                                                    |                                             |
| study. BMJ open 11(3): e048391                                                              |                                             |
| Desgranges, Florian, Tadini, Eliana, Munting,                                               | - Sample size less than 10,000              |
| Aline et al. Post-COVID-19 syndrome in                                                      |                                             |
| outpatients: a cohort study. medrxiv preprint                                               |                                             |
| Divanoglou, Anestis, Samuelsson, Kersti,                                                    | - Sample size less than 10,000              |
| Sj?dahl, Rune et al. Rehabilitation needs and                                               |                                             |
| mortality associated with the Covid-19                                                      |                                             |
| pandemic: a population-based study of all                                                   |                                             |
| hospitalised and home-healthcare individuals in                                             |                                             |
| a Swedish healthcare region. medrxiv preprint<br>Donegani, Maria Isabella, Miceli, Alberto, | - Study aim: Pathophysiology/mechanisms     |
| Pardini, Matteo et al. (2021) Brain Metabolic                                               | - Study alm. Famophysiology/methanisms      |
| Correlates of Persistent Olfactory Dysfunction                                              |                                             |
| after SARS-Cov2 Infection. Biomedicines 9(3)                                                |                                             |
| Estiri, Hossein, Strasser, Zachary, Brat, Gabriel                                           | - Covered within included primary study     |
| et al. Evolving Phenotypes of non-hospitalized                                              | Covered within monaced primary study        |
| Patients that Indicate Long Covid. medrxiv                                                  |                                             |
| preprint                                                                                    |                                             |
|                                                                                             |                                             |

| Evans Rachael, Andrea, McAuley, Hamish,                                                     | <ul> <li>For consideration at future update pending</li> </ul>                    |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Harrison Ewen, M et al. Physical, cognitive and                                             | further data                                                                      |
| mental health impacts of COVID-19 following                                                 |                                                                                   |
| hospitalisation: a multi-centre prospective cohort                                          |                                                                                   |
| study. medrxiv preprint                                                                     | No data ta avtraat                                                                |
| Fair Health (2021) A Detailed Study of Patients                                             | - No data to extract                                                              |
| with Long-Haul COVID: An Analysis of Private                                                |                                                                                   |
| Healthcare Claims.                                                                          | Cooping appagement in a impact on surrant                                         |
| Faverio, Paola, Luppi, Fabrizio, Rebora, Paola                                              | <ul> <li>Scoping assessment - no impact on current<br/>recommendations</li> </ul> |
| et al. Six-month pulmonary impairment after severe COVID-19: a prospective, multicenter     | recommendations                                                                   |
| follow-up study. medrxiv preprint                                                           |                                                                                   |
| Froidure, Antoine, Mahsouli, Amin, Liistro,                                                 | - Sample size less than 10,000                                                    |
| Giuseppe et al. (2021) Integrative respiratory                                              |                                                                                   |
| follow-up of severe COVID-19 reveals common                                                 |                                                                                   |
| functional and lung imaging sequelae.                                                       |                                                                                   |
| Respiratory medicine 181: 106383                                                            |                                                                                   |
| Frontera Jennifer, A., Yang, Dixon, Lewis,                                                  | - Sample size less than 10,000                                                    |
| Ariane et al. A Prospective Study of Long-Term                                              |                                                                                   |
| Outcomes Among Hospitalized COVID-19                                                        |                                                                                   |
| Patients with and without Neurological                                                      |                                                                                   |
| Complications. medrxiv preprint                                                             |                                                                                   |
| Gaber T A-Z, K; Ashish, A; Unsworth, A (2021)                                               | -Sample size less than 10,000                                                     |
| Persistent post-covid symptoms in healthcare                                                |                                                                                   |
| workers. Occupational medicine (Oxford,                                                     |                                                                                   |
| England)                                                                                    |                                                                                   |
| Galal, islam, Hussein Aliae AR, Mohamed-                                                    | -Sample size less than 10,000                                                     |
| Hussein, Amin - Mariam, T et al. Determinants                                               |                                                                                   |
| of Persistent Post COVID-19 symptoms: Value                                                 |                                                                                   |
| of a Novel COVID-19 symptoms score. medrxiv                                                 |                                                                                   |
| preprint                                                                                    |                                                                                   |
| Ganesh, Ravindra, Grach Stephanie, L, Bierle                                                | - Sample size less than 10,000                                                    |
| Dennis, M et al. The Female Predominant                                                     |                                                                                   |
| Persistent Immune Dysregulation of the Post                                                 |                                                                                   |
| COVID Syndrome: A Cohort Study. medrxiv                                                     |                                                                                   |
| preprint                                                                                    |                                                                                   |
| Ghosn, Jade, Piroth, Lionel, Epaulard, Olivier et                                           | - Sample size less than 10,000                                                    |
| al. (2021) Persistent COVID-19 symptoms are                                                 |                                                                                   |
| highly prevalent 6 months after hospitalization:                                            |                                                                                   |
| results from a large prospective cohort. Clinical                                           |                                                                                   |
| microbiology and infection : the official                                                   |                                                                                   |
| publication of the European Society of Clinical                                             |                                                                                   |
| Microbiology and Infectious Diseases                                                        |                                                                                   |
| Giovannetti, Guido, De Michele, Lucrezia, De                                                | - Scoping assessment - no impact on current                                       |
| Ceglie, Michele et al. (2021) Lung                                                          | recommendations                                                                   |
| ultrasonography for long-term follow-up of                                                  |                                                                                   |
| COVID-19 survivors compared to chest CT                                                     |                                                                                   |
| scan. Respiratory medicine 181: 106384                                                      | Cooping appagament and impact on surrout                                          |
| Gobbi, M, Brunani, A, Arreghini, M et al. (2021)                                            | <ul> <li>Scoping assessment - no impact on current<br/>recommendations</li> </ul> |
| Nutritional status in post SARS-Cov2                                                        |                                                                                   |
| rehabilitation patients. Clinical nutrition                                                 |                                                                                   |
| (Edinburgh, Scotland)<br>Guler, Sabina A, Ebner, Lukas, Beigelman                           | Sample size less than 10 000                                                      |
| Guler, Sabina A, Ebner, Lukas, Beigelman,<br>Catherine et al. (2021) Pulmonary function and | - Sample size less than 10,000                                                    |
| radiological features four months after COVID-                                              |                                                                                   |
| 19: first results from the national prospective                                             |                                                                                   |
| observational Swiss COVID-19 lung study. The                                                |                                                                                   |
| European respiratory journal                                                                |                                                                                   |
| Laropean respiratory journal                                                                |                                                                                   |

| Hallam F, Rankin R BJ (2021) Rehabilitation of      | - Study design: Expert opinion                           |
|-----------------------------------------------------|----------------------------------------------------------|
| adults who are hospitalised due to acute            |                                                          |
| COVID-19 or Long COVID: physiotherapy               |                                                          |
| service delivery.                                   |                                                          |
| Heightman, Melissa, Prashar, Jai, Hillman, Toby     | - Sample size less than 10,000                           |
| et al. Post-COVID assessment in a specialist        |                                                          |
| clinical service: a 12-month, single-centre         |                                                          |
| analysis of symptoms and healthcare needs in        |                                                          |
| 1325 individuals. medrxiv preprint                  |                                                          |
|                                                     | Comple size less than 10,000                             |
| Hirschtick, Jana L, Titus, Andrea R, Slocum,        | - Sample size less than 10,000                           |
| Elizabeth et al. (2021) Population-based            |                                                          |
| estimates of post-acute sequelae of SARS-CoV-       |                                                          |
| 2 infection (PASC) prevalence and                   |                                                          |
| characteristics. Clinical infectious diseases : an  |                                                          |
| official publication of the Infectious Diseases     |                                                          |
| Society of America                                  |                                                          |
| Holmes, Elaine, Wist, Julien, Masuda, Reika et      | - Scoping assessment - no impact on current              |
| al. (2021) Incomplete Systemic Recovery and         | recommendations                                          |
| Metabolic Phenoreversion in Post-Acute-Phase        |                                                          |
| Nonhospitalized COVID-19 Patients:                  |                                                          |
| Implications for Assessment of Post-Acute           |                                                          |
| COVID-19 Syndrome. Journal of proteome              |                                                          |
| research                                            |                                                          |
| Hopkins, C, Surda, P, Vaira, L A et al. (2020)      | - Sample size less than 10,000                           |
| Six month follow-up of self-reported loss of        |                                                          |
| smell during the COVID-19 pandemic.                 |                                                          |
| Rhinology                                           |                                                          |
| Horn, Mathilde, Wathelet, Marielle, Fovet,          | - Sample size less than 10,000                           |
| Thomas et al. (2020) Is COVID-19 Associated         |                                                          |
| With Posttraumatic Stress Disorder?. The            |                                                          |
|                                                     |                                                          |
| Journal of clinical psychiatry 82(1)                |                                                          |
| Hoshijima, Hiroshi, Mihara, Takahiro, Seki,         | - Covered in included systematic review                  |
| Hiroyuki et al. Incidence of Long-term Post-        |                                                          |
| acute Sequelae of SARS-CoV-2 Infection              |                                                          |
| Related to Pain and Other Symptoms: A Living        |                                                          |
| Systematic Review and Meta-analysis. medrxiv        |                                                          |
| preprint                                            |                                                          |
| Humphreys, H., Kilby, L., Kudiersky, N. et al.      | <ul> <li>Qualitative studies: Separate search</li> </ul> |
| (2021) Long COVID and the role of physical          | conducted by SIGN                                        |
| activity: a qualitative study. BMJ Open 11(3):      |                                                          |
| 047632                                              |                                                          |
| Hunter, A., Hodgson, L., Leckie, T. et al. (2020)   | - Scoping assessment - no impact on current              |
| Socially distanced rehabilitation: A potential new  | recommendations                                          |
| normal for post-critical care recovery?. Intensive  |                                                          |
| Care Medicine Experimental 8(suppl2)                |                                                          |
| Hylton, H., Pfeffer, P.E., Robson, C. et al.        | - Study design: Conference abstract                      |
| (2021) Rapid design and implementation of a         | ettary design. comorchoe abolidot                        |
| personalised holistic post-COVID recovery and       |                                                          |
|                                                     |                                                          |
| rehab app. Thorax 76(suppl1): a236                  | Intervention: Dependitation on discharge                 |
| Iftikhar, Hina; Doherty, Warren L; Sharp,           | - Intervention: Rehabilitation on discharge              |
| Charles (2021) Long-term COVID-19                   |                                                          |
| complications: a multidisciplinary clinic follow-up |                                                          |
| approach. Clinical medicine (London, England)       |                                                          |
| 21(suppl2): 3-4                                     |                                                          |
| lqbal, Ayman, lqbal, Kinza, Arshad Ali, Shajeea     | - Sample size less than 10,000                           |
| et al. (2021) The COVID-19 Sequelae: A Cross-       |                                                          |
| Sectional Evaluation of Post-recovery               |                                                          |
| Symptome and the Need for Dehebilitation of         |                                                          |
| Symptoms and the Need for Rehabilitation of         |                                                          |
| COVID-19 Survivors. Cureus 13(2): e13080            |                                                          |

| lqbal, Fahad M, Lam, Kyle, Sounderajah,            | <ul> <li>Covered in included systematic review</li> </ul> |
|----------------------------------------------------|-----------------------------------------------------------|
| Viknesh et al. (2021) Characteristics and          |                                                           |
| predictors of acute and chronic post-COVID         |                                                           |
| syndrome: A systematic review and meta-            |                                                           |
| analysis. EClinicalMedicine 36: 100899             |                                                           |
| Ismael, Flavia, Bizario, Joao C S, Battagin,       | -Sample size less than 10,000                             |
| Tatiane et al. (2021) Post-infection depressive,   |                                                           |
| anxiety and post-traumatic stress symptoms: A      |                                                           |
| prospective cohort study in patients with mild     |                                                           |
| COVID-19. Progress in neuro-                       |                                                           |
| psychopharmacology & biological psychiatry:        |                                                           |
| 110341                                             |                                                           |
| Iwu, C.J.; Iwu, C.D.; Wiysonge, C.S. (2021) The    | - Review of studies covered in development                |
| occurrence of long COVID: A rapid review. Pan      |                                                           |
| African Medical Journal 38: 1-12                   |                                                           |
| Jacobs, Laurie G, Gourna Paleoudis, Elli,          | - Sample size less than 10,000                            |
| Lesky-Di Bari, Dineen et al. (2020) Persistence    |                                                           |
| of symptoms and quality of life at 35 days after   |                                                           |
| hospitalization for COVID-19 infection. PloS one   |                                                           |
| 15(12): e0243882                                   |                                                           |
| Jewson, Jacob; McNamara, Alice; Fitzpatrick,       | - Supporting evidence                                     |
| Jane (2020) Life after COVID-19: The               |                                                           |
| importance of a safe return to physical activity.  |                                                           |
| Australian journal of general practice 49          |                                                           |
| Ladds, Emma, Rushforth, Alex, Wieringa, Sietse     | - Qualitative studies: Separate search                    |
| et al. (2020) Persistent symptoms after Covid-     | conducted by SIGN                                         |
| 19: qualitative study of 114 "long Covid" patients | ,                                                         |
| and draft quality principles for services. BMC     |                                                           |
| health services research 20(1): 1144               |                                                           |
| Ladds, Emma, Rushforth, Alex, Wieringa, Sietse     | - Qualitative studies: Separate search                    |
| et al. (2021) Developing services for long         | conducted by SIGN                                         |
| COVID: lessons from a study of wounded             | ,                                                         |
| healers. Clinical medicine (London, England)       |                                                           |
| 21(1): 59-65                                       |                                                           |
| Lemhofer, Christina, Gutenbrunner, Christoph,      | - Study design: Narrative review with no data             |
| Schiller, Jorg et al. (2021) Assessment of         | , ,                                                       |
| rehabilitation needs in patients after COVID-19:   |                                                           |
| Development of the COVID-19-rehabilitation         |                                                           |
| needs survey. Journal of rehabilitation medicine   |                                                           |
| Li, Jian'an, Xia, Wenguang, Zhan, Chao et al.      | - Scoping assessment - no impact on current               |
| Effectiveness of a telerehabilitation program for  | recommendations                                           |
| COVID-19 survivors (TERECO) on exercise            |                                                           |
| capacity, pulmonary function, lower limb muscle    |                                                           |
| strength, and quality of life: a randomised        |                                                           |
| controlled trial. medrxiv preprint                 |                                                           |
| Lopez-Leon, Sandra, Wegman-Ostrosky, Talia,        | - Covered in included systematic review                   |
| Perelman, Carol et al. (2021) More than 50         |                                                           |
| Long-term effects of COVID-19: a systematic        |                                                           |
| review and meta-analysis. medRxiv : the            |                                                           |
| preprint server for health sciences                |                                                           |
| Mahmud, Reaz, Rahman, Md Mujibur, Rassel,          | - Sample size less than 10,000                            |
| Mohammad Aftab et al. (2021) Post-COVID-19         |                                                           |
| syndrome among symptomatic COVID-19                |                                                           |
| patients: A prospective cohort study in a tertiary |                                                           |
| care center of Bangladesh. PloS one 16(4):         |                                                           |
| e0249644                                           |                                                           |
| Makaronidis, Janine, Firman, Chloe, Magee,         | - Sample size less than 10,000                            |
| Cormac G et al. (2021) Distorted chemosensory      |                                                           |
| perception and female sex associate with           |                                                           |
|                                                    |                                                           |

| persistent smell and/or taste loss in people with SARS-CoV-2 antibodies: a community based       |                                             |
|--------------------------------------------------------------------------------------------------|---------------------------------------------|
| cohort study investigating clinical course and                                                   |                                             |
| resolution of acute smell and/or taste loss in                                                   |                                             |
| people with and without SARS-CoV-2 antibodies                                                    |                                             |
| in London, UK. BMC infectious diseases 21(1): 221                                                |                                             |
| Malik, Jahanzeb, Zaidi Syed Muhammad,                                                            | - Covered in included systematic review     |
| Jawad, Ishaq, Uzma et al. Post-acute COVID-19                                                    |                                             |
| syndrome and its prolonged effects: An updated systematic review. medrxiv preprint               |                                             |
| Mandal, Swapna, Barnett, Joseph, Brill, Simon                                                    | - Sample size less than 10,000              |
| E et al. (2020) 'Long-COVID': a cross-sectional                                                  |                                             |
| study of persisting symptoms, biomarker and                                                      |                                             |
| imaging abnormalities following hospitalisation                                                  |                                             |
| for COVID-19. Thorax                                                                             | -                                           |
| Martin, Ines, Braem, Fred, Baudet, Lia et al.                                                    | - Scoping assessment - no impact on current |
| (2021) Follow-up of functional exercise capacity<br>in patients with COVID-19: It is improved by | recommendations                             |
| telerehabilitation. Respiratory medicine 183:                                                    |                                             |
| 106438                                                                                           |                                             |
| Mattioli, Flavia, Stampatori, Chiara, Righetti,                                                  | - Sample size less than 10,000              |
| Francesca et al. (2021) Neurological and                                                         |                                             |
| cognitive sequelae of Covid-19: a four month                                                     |                                             |
| follow-up. Journal of neurology<br>Meije, Y, Duarte-Borges, A, Sanz, X et al.                    | - Sample size less than 10,000              |
| (2021) Long-term outcomes of patients following                                                  |                                             |
| hospitalization for COVID-19: a prospective                                                      |                                             |
| observational study. Clinical microbiology and                                                   |                                             |
| infection : the official publication of the                                                      |                                             |
| European Society of Clinical Microbiology and                                                    |                                             |
| Infectious Diseases<br>Miller, Faith, Nguyen, Vincent, Navaratnam                                | - Duplicate                                 |
| Annalan, MD et al. Prevalence of persistent                                                      | - Duplicate                                 |
| symptoms in children during the COVID-19                                                         |                                             |
| pandemic: evidence from a household cohort                                                       |                                             |
| study in England and Wales. medrxiv preprint                                                     |                                             |
| Miskowiak, K W, Johnsen, S, Sattler, S M et al.                                                  | - Sample size less than 10,000              |
| (2021) Cognitive impairments four months after<br>COVID-19 hospital discharge: Pattern, severity |                                             |
| and association with illness variables. European                                                 |                                             |
| neuropsychopharmacology : the journal of the                                                     |                                             |
| European College of                                                                              |                                             |
| Neuropsychopharmacology 46: 39-48                                                                |                                             |
| Montefusco, Laura, Ben Nasr, Moufida, D'Addio,                                                   | - Scoping assessment - no impact on current |
| Francesca et al. (2021) Acute and long-term disruption of glycometabolic control after SARS-     | recommendations                             |
| CoV-2 infection. Nature metabolism                                                               |                                             |
| Moradi, Yaser, Mollazadeh, Farzin, Karimi,                                                       | - Qualitative studies: Separate search      |
| Parivash et al. (2020) Psychological                                                             | conducted by SIGN                           |
| disturbances of survivors throughout COVID-19                                                    |                                             |
| crisis: a qualitative study. BMC psychiatry 20(1):                                               |                                             |
| 594<br>Morono Doroz, Oppor, Morino, Esperanza                                                    | Sample size loss than 10,000                |
| Moreno-Perez, Oscar, Merino, Esperanza,<br>Leon-Ramirez, Jose-Manuel et al. (2021) Post-         | - Sample size less than 10,000              |
| acute COVID-19 Syndrome. Incidence and risk                                                      |                                             |
| factors: a Mediterranean cohort study. The                                                       |                                             |
| Journal of infection                                                                             |                                             |
|                                                                                                  |                                             |

| Nehme, Mayssam (2020) COVID-19 Symptoms:                                                    | - Sample size less than 10,000              |
|---------------------------------------------------------------------------------------------|---------------------------------------------|
| Longitudinal Evolution and Persistence in                                                   |                                             |
| Outpatient Settings. Annals of Internal Medicine                                            |                                             |
| Office for National Statistics (2021) Prevalence                                            | - No data to extract                        |
| of ongoing symptoms following coronavirus                                                   |                                             |
| (COVID-19) infection in the UK: 1 July 2021.                                                | -                                           |
| Parkin, Amy, Davison, Jennifer, Tarrant, Rachel                                             | - Scoping assessment - no impact on current |
| et al. (2021) A Multidisciplinary NHS COVID-19                                              | recommendations                             |
| Service to Manage Post-COVID-19 Syndrome in                                                 |                                             |
| the Community. Journal of primary care &                                                    |                                             |
| community health 12: 21501327211010994                                                      |                                             |
| Pearmain, L., Avram, C., Yioe, V. et al. (2021)                                             | - Study design: Conference abstract         |
| Patient symptoms following discharge from                                                   |                                             |
| hospital after COVID-19 pneumonia. Thorax                                                   |                                             |
| 76(suppl1): a180-a181                                                                       |                                             |
| Peluso, Michael J, Kelly, J Daniel, Lu, Scott et                                            | - Sample size less than 10,000              |
| al. (2021) Rapid implementation of a cohort for                                             |                                             |
| the study of post-acute sequelae of SARS-CoV-                                               |                                             |
| 2 infection/COVID-19. medRxiv : the preprint                                                |                                             |
| server for health sciences                                                                  |                                             |
| Penner, Justin, Abdel-Mannan, Omar, Grant,                                                  | - Duplicate                                 |
| Karlie et al. (2021) 6-month multidisciplinary                                              |                                             |
| follow-up and outcomes of patients with                                                     |                                             |
| paediatric inflammatory multisystem syndrome                                                |                                             |
| (PIMS-TS) at a UK tertiary paediatric hospital: a                                           |                                             |
| retrospective cohort study. The Lancet. Child &                                             |                                             |
| adolescent health                                                                           |                                             |
| Perlis, Roy H, Green, Jon, Santillana, Mauricio                                             | - Sample size less than 10,000              |
| et al. (2021) Persistence of symptoms up to 10                                              |                                             |
| months following acute COVID-19 illness.                                                    |                                             |
| medRxiv : the preprint server for health sciences                                           |                                             |
| Pilotto, Andrea, cristillo, viviana, Piccinelli                                             | - Sample size less than 10,000              |
| stefano, cotti et al. COVID-19 severity impacts                                             |                                             |
| on long-term neurological manifestation after                                               |                                             |
| hospitalisation. medrxiv preprint                                                           |                                             |
| Pizarro-Pennarolli, Catalina, Sanchez-Rojas,                                                | - Scoping assessment - no impact on current |
| Carlos, Torres-Castro, Rodrigo et al. (2021)                                                | recommendations                             |
| Assessment of activities of daily living in                                                 |                                             |
| patients post COVID-19: a systematic review.                                                |                                             |
| PeerJ 9: e11026                                                                             |                                             |
| Rao, Sanjay, Benzouak, Tarek, Gunpat, Sasha                                                 | - Covered in included systematic review     |
| et al. Fatigue symptoms associated with                                                     |                                             |
| COVID-19 in convalescent or recovered COVID-                                                |                                             |
| 19 patients; a systematic review and meta-                                                  |                                             |
| analysis. medrxiv preprint                                                                  |                                             |
| Rass, Verena, Beer, Ronny, Josef Schiefecker,                                               | - Sample size less than 10,000              |
|                                                                                             | - Gample Size 1655 (11411-10,000            |
| Alois et al. (2021) Neurological outcome and quality of life three months after COVID-19: a |                                             |
|                                                                                             |                                             |
| prospective observational cohort study.                                                     |                                             |
| European journal of neurology                                                               | Durliante                                   |
| Rass, Verena, Beer, Ronny, Schiefecker, Alois                                               | - Duplicate                                 |
| Josef et al. (2021) Neurological outcome and                                                |                                             |
| quality of life 3 months after COVID-19: A                                                  |                                             |
| prospective observational cohort study.                                                     |                                             |
| European Journal of Neurology                                                               |                                             |
| Raw RK, Kelly CA, Rees J et al. (2021)                                                      | - No data to extract                        |
| Previous COVID-19 infection, but not Long-<br>COVID, is associated with increased adverse   |                                             |
|                                                                                             |                                             |

| events following BNT162b2/Pfizer vaccination.     |                                                      |
|---------------------------------------------------|------------------------------------------------------|
| The Journal of infection                          |                                                      |
| Rizzo Paolo, Boscolo-Rizzo, Menegaldo, Anna,      | - Sample size less than 10,000                       |
| Fabbris, Cristoforo et al. High prevalence of     |                                                      |
| long-term psychophysical olfactory dysfunction    |                                                      |
| in patients with COVID-19. medrxiv preprint       |                                                      |
| Rizzo Paolo, Boscolo, Guida, Francesco,           | - Sample size less than 10,000                       |
| Polesel, Jerry et al. Long COVID In Adults at 12  |                                                      |
| Months After Mild-to-Moderate SARS-CoV-2          |                                                      |
| Infection. medrxiv preprint                       |                                                      |
| Romero-Duarte, Alvaro, Rivera-Izquierdo,          | - Sample size less than 10,000                       |
| Mario, Guerrero-Fernandez de Alba,                |                                                      |
| Inmaculada et al. (2021) Sequelae, persistent     |                                                      |
| symptomatology and outcomes after COVID-19        |                                                      |
| hospitalization: the ANCOHVID multicentre 6-      |                                                      |
| month follow-up study. BMC medicine 19(1):        |                                                      |
| 129                                               |                                                      |
| Saigal, A., Naidu, S.B., Shah, A.J. et al. (2021) | - Study design: Conference abstract                  |
| 'Long-COVID': The need for multi-disciplinary     | , , ,                                                |
| working. Thorax 76(suppl1): a33-a34               |                                                      |
| Salamanna, Francesca, Veronesi, Francesca,        | - Covered in included systematic review              |
| Martini, Lucia et al. (2021) Post-COVID-19        |                                                      |
| Syndrome: The Persistent Symptoms at the          |                                                      |
| Post-viral Stage of the Disease. A Systematic     |                                                      |
| Review of the Current Data. Frontiers in          |                                                      |
| medicine 8: 653516                                |                                                      |
| Santiago-Rodriguez, Edda I, Maiorana, Andres,     | - Qualitative studies: Separate search               |
| Peluso, Michael J et al. (2021) Characterizing    | conducted by SIGN                                    |
| the COVID-19 illness experience to inform the     |                                                      |
| study of post-acute sequalae and recovery: a      |                                                      |
| qualitative study. medRxiv : the preprint server  |                                                      |
| for health sciences                               |                                                      |
| SCHERLINGER, Marc, Felten, Renaud, Gallais,       | - Sample size less than 10,000                       |
| Floriane et al. Refining long-COVID by a          |                                                      |
| prospective multimodal evaluation of patients     |                                                      |
| with long-term symptoms related to SARS-CoV-      |                                                      |
|                                                   |                                                      |
| 2 infection. medrxiv preprint                     | Sample size loss than 10,000                         |
| Shang, Y F, Liu, T, Yu, J N et al. (2021) Half-   | - Sample size less than 10,000                       |
| year follow-up of patients recovering from        |                                                      |
| severe COVID-19: Analysis of symptoms and         |                                                      |
| their risk factors. Journal of internal medicine  | Comple size loss that 40,000                         |
| Shouman, Kamal, Vanichkachorn, Greg,              | - Sample size less than 10,000                       |
| Cheshire, William P et al. (2021) Autonomic       |                                                      |
| dysfunction following COVID-19 infection: an      |                                                      |
| early experience. Clinical autonomic research :   |                                                      |
| official journal of the Clinical Autonomic        |                                                      |
| Research Society                                  |                                                      |
| Sigfrid, Louise, Drake Tom, M, Pauley, Ellen et   | - Sample size less than 10,000                       |
| al. Long Covid in adults discharged from UK       |                                                      |
| hospitals after Covid-19: A prospective,          |                                                      |
| multicentre cohort study using the ISARIC WHO     |                                                      |
| Clinical Characterisation Protocol. medrxiv       |                                                      |
| preprint                                          |                                                      |
| Skyrud Katrine, Damgaard; Telle Kjetil, Elias;    | <ul> <li>Not relevant to review protocols</li> </ul> |
| Magnusson, Karin Impacts of COVID-19 on           |                                                      |
| long-term health and health care use. medrxiv     |                                                      |
| preprint                                          |                                                      |
| Soraas, Arne, Ro, Ragnhild, Kalleberg Karl, T et  | - Covered in included systematic review              |
| al. Self-reported Memory Problems Eight           |                                                      |
|                                                   |                                                      |

| Months after Non-Hospitalized COVID-19 in a<br>Large Cohort. medrxiv preprint-Spotnitz Matthew, E, Hripcsak, George, Ryan<br>Patrick, B et al. Characterizing Post-Acute<br>Sequelae of SARS-CoV-2 Infection across<br>Claims and Electronic Health Record<br>Databases. medrxiv preprint- Covered in included systematic reviewSudre, Carole H, Murray, Benjamin, Varsavsky,<br>Thomas et al. (2021) Attributes and predictors of<br>long COVID. Nature medicine- Sample size less than 10,000Sykes, Dominic L, Holdsworth, Luke, Jawad,<br>Nadia et al. (2021) Post-COVID-19 Symptom<br>Burden: What is Long-COVID and How Should<br>We Manage It?. Lung- Sample size less than 10,000Tabacof, Laura, Mancuso Jenna, Tosto-<br>Mancuso, Wood, Jamie et al. Post-acute<br>COVID-19 syndrome negatively impacts health- Sample size less than 10,000 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spotnitz Matthew, E, Hripcsak, George, Ryan<br>Patrick, B et al. Characterizing Post-Acute<br>Sequelae of SARS-CoV-2 Infection across<br>Claims and Electronic Health Record<br>Databases. medrxiv preprint- Covered in included systematic reviewSudre, Carole H, Murray, Benjamin, Varsavsky,<br>Thomas et al. (2021) Attributes and predictors of<br>long COVID. Nature medicine- Sample size less than 10,000Sykes, Dominic L, Holdsworth, Luke, Jawad,<br>Nadia et al. (2021) Post-COVID-19 Symptom<br>Burden: What is Long-COVID and How Should<br>We Manage It?. Lung- Sample size less than 10,000Tabacof, Laura, Mancuso Jenna, Tosto-<br>Mancuso, Wood, Jamie et al. Post-acute- Sample size less than 10,000                                                                                                                              |
| Patrick, B et al. Characterizing Post-Acute<br>Sequelae of SARS-CoV-2 Infection across<br>Claims and Electronic Health Record<br>Databases. medrxiv preprint- Sample size less than 10,000Sudre, Carole H, Murray, Benjamin, Varsavsky,<br>Thomas et al. (2021) Attributes and predictors of<br>long COVID. Nature medicine- Sample size less than 10,000Sykes, Dominic L, Holdsworth, Luke, Jawad,<br>Nadia et al. (2021) Post-COVID-19 Symptom<br>Burden: What is Long-COVID and How Should<br>We Manage It?. Lung- Sample size less than 10,000Tabacof, Laura, Mancuso Jenna, Tosto-<br>Mancuso, Wood, Jamie et al. Post-acute- Sample size less than 10,000                                                                                                                                                                                      |
| Sequelae of SARS-CoV-2 Infection across<br>Claims and Electronic Health Record<br>Databases. medrxiv preprint-Sudre, Carole H, Murray, Benjamin, Varsavsky,<br>Thomas et al. (2021) Attributes and predictors of<br>long COVID. Nature medicine- Sample size less than 10,000Sykes, Dominic L, Holdsworth, Luke, Jawad,<br>Nadia et al. (2021) Post-COVID-19 Symptom<br>Burden: What is Long-COVID and How Should<br>We Manage It?. Lung- Sample size less than 10,000Tabacof, Laura, Mancuso Jenna, Tosto-<br>Mancuso, Wood, Jamie et al. Post-acute- Sample size less than 10,000                                                                                                                                                                                                                                                                  |
| Claims and Electronic Health Record<br>Databases. medrxiv preprint-Sudre, Carole H, Murray, Benjamin, Varsavsky,<br>Thomas et al. (2021) Attributes and predictors of<br>long COVID. Nature medicine- Sample size less than 10,000Sykes, Dominic L, Holdsworth, Luke, Jawad,<br>Nadia et al. (2021) Post-COVID-19 Symptom<br>Burden: What is Long-COVID and How Should<br>We Manage It?. Lung- Sample size less than 10,000Tabacof, Laura, Mancuso Jenna, Tosto-<br>Mancuso, Wood, Jamie et al. Post-acute- Sample size less than 10,000                                                                                                                                                                                                                                                                                                             |
| Databases. medrxiv preprintSudre, Carole H, Murray, Benjamin, Varsavsky,<br>Thomas et al. (2021) Attributes and predictors of<br>long COVID. Nature medicine- Sample size less than 10,000Sykes, Dominic L, Holdsworth, Luke, Jawad,<br>Nadia et al. (2021) Post-COVID-19 Symptom<br>Burden: What is Long-COVID and How Should<br>We Manage It?. Lung- Sample size less than 10,000Tabacof, Laura, Mancuso Jenna, Tosto-<br>Mancuso, Wood, Jamie et al. Post-acute- Sample size less than 10,000                                                                                                                                                                                                                                                                                                                                                     |
| Sudre, Carole H, Murray, Benjamin, Varsavsky,<br>Thomas et al. (2021) Attributes and predictors of<br>long COVID. Nature medicine- Sample size less than 10,000Sykes, Dominic L, Holdsworth, Luke, Jawad,<br>Nadia et al. (2021) Post-COVID-19 Symptom<br>Burden: What is Long-COVID and How Should<br>We Manage It?. Lung- Sample size less than 10,000Tabacof, Laura, Mancuso Jenna, Tosto-<br>Mancuso, Wood, Jamie et al. Post-acute- Sample size less than 10,000                                                                                                                                                                                                                                                                                                                                                                                |
| Thomas et al. (2021) Attributes and predictors of<br>long COVID. Nature medicine- Sample size less than 10,000Sykes, Dominic L, Holdsworth, Luke, Jawad,<br>Nadia et al. (2021) Post-COVID-19 Symptom<br>Burden: What is Long-COVID and How Should<br>We Manage It?. Lung- Sample size less than 10,000Tabacof, Laura, Mancuso Jenna, Tosto-<br>Mancuso, Wood, Jamie et al. Post-acute- Sample size less than 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| long COVID. Nature medicineSykes, Dominic L, Holdsworth, Luke, Jawad,<br>Nadia et al. (2021) Post-COVID-19 Symptom<br>Burden: What is Long-COVID and How Should<br>We Manage It?. Lung- Sample size less than 10,000Tabacof, Laura, Mancuso Jenna, Tosto-<br>Mancuso, Wood, Jamie et al. Post-acute- Sample size less than 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sykes, Dominic L, Holdsworth, Luke, Jawad,<br>Nadia et al. (2021) Post-COVID-19 Symptom<br>Burden: What is Long-COVID and How Should<br>We Manage It?. Lung- Sample size less than 10,000Tabacof, Laura, Mancuso Jenna, Tosto-<br>Mancuso, Wood, Jamie et al. Post-acute- Sample size less than 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nadia et al. (2021) Post-COVID-19 Symptom<br>Burden: What is Long-COVID and How Should<br>We Manage It?. Lung- Sample size less than 10,000Tabacof, Laura, Mancuso Jenna, Tosto-<br>Mancuso, Wood, Jamie et al. Post-acute- Sample size less than 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Burden: What is Long-COVID and How Should         We Manage It?. Lung         Tabacof, Laura, Mancuso Jenna, Tosto-         Mancuso, Wood, Jamie et al. Post-acute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| We Manage It?. LungTabacof, Laura, Mancuso Jenna, Tosto-<br>Mancuso, Wood, Jamie et al. Post-acute- Sample size less than 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Tabacof, Laura, Mancuso Jenna, Tosto-<br>Mancuso, Wood, Jamie et al. Post-acute- Sample size less than 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mancuso, Wood, Jamie et al. Post-acute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| and wellbeing despite less severe acute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| infection. medrxiv preprint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Taquet, M (2020) Bidirectional associations - Covered in included systematic review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| between COVID-19 and psychiatric disorder:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| retrospective cohort studies of 62?354 COVID-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 19 cases in the USA. The Lancet Psychiatry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Tarsitani, Lorenzo, Vassalini, Paolo,<br>Kaukanaulaa, Alaxia et al. (2021) Bast traumatia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Koukopoulos, Alexia et al. (2021) Post-traumatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Stress Disorder Among COVID-19 Survivors at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3-Month Follow-up After Hospital Discharge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Journal of general internal medicine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Todt, Beatriz Costa, Szlejf, Claudia, Duim,<br>Etienne et al. (2021) Clinical outcomes and- Sample size less than 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| quality of life of COVID-19 survivors: A follow-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| of 3 months post hospital discharge. Respiratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| medicine 184: 106453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Townsend, Liam, Moloney, David, Finucane, - Sample size less than 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ciaran et al. (2021) Fatigue following COVID-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| infection is not associated with autonomic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| dysfunction. PloS one 16(2): e0247280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tran, Viet-Thi, Riveros, Carolina, Clepier,- Scoping assessment - no impact on currentBerangere et al. Development and validation ofrecommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| the long covid symptom and impact tools, a set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| of patient-reported instruments constructed from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| patients' lived experience. medrxiv preprint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Trimboli, Pierpaolo, Camponovo, Chiara, - Covered in included systematic review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Scappaticcio, Lorenzo et al. (2021) Thyroid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| sequelae of COVID-19: a systematic review of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| reviews. Reviews in endocrine & metabolic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| disorders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Vaira LA, Hopkins C, Petrocelli M et al. (2021) - Scoping assessment - no impact on current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Efficacy of corticosteroid therapy in the recommendations treatment of long- lasting olfactory disorders in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| COVID-19 patients. Rhinology 59(1): 21-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Vanderlind, William Michael, Rabinovitz, Beth B, - Covered in included systematic review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Miao, Iris Yi et al. (2021) A systematic review of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| neuropsychological and psychiatric sequalae of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| COVID-19: implications for treatment. Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| opinion in psychiatry 34(4): 420-433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Voruz, Philippe, Allali, Gilles, Benzakour,<br>Lamvaa et al. Long COVID neuropsychological                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Lamyae et al. Long COVID neuropsychological                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| deficits after severe, moderate or mild infection.  |                                         |
|-----------------------------------------------------|-----------------------------------------|
| medrxiv preprint                                    |                                         |
| Walle-Hansen, M M, Ranhoff, A H,                    | - Sample size less than 10,000          |
| Mellingsaeter, M et al. (2021) Health-related       |                                         |
| quality of life, functional decline, and long-term  |                                         |
| mortality in older patients following               |                                         |
| hospitalisation due to COVID-19. BMC geriatrics     |                                         |
| 21(1): 199                                          |                                         |
| Wallis, T J M, Heiden, E, Horno, J et al. (2021)    | - Sample size less than 10,000          |
| Risk factors for persistent abnormality on chest    |                                         |
| radiographs at 12-weeks post hospitalisation        |                                         |
| with PCR confirmed COVID-19. Respiratory            |                                         |
| research 22(1): 157                                 |                                         |
| Westerlind, Emma, Palstam, Annie,                   | - Covered in included systematic review |
| Sunnerhagen, Katharina S et al. (2021) Patterns     |                                         |
| and predictors of sick leave after Covid-19 and     |                                         |
| long Covid in a national Swedish cohort. BMC        |                                         |
| public health 21(1): 1023                           |                                         |
| Wildwing, T. and Holt, N. (2021) The                | - Covered in included systematic review |
| neurological symptoms of COVID-19: a                | - Oovered in moldeed systematic review  |
| systematic overview of systematic reviews,          |                                         |
| comparison with other neurological conditions       |                                         |
| and implications for healthcare services.           |                                         |
| Therapeutic Advances in Chronic Disease 12          |                                         |
| Writing Committee for the COMEBAC Study,            | - Sample size less than 10,000          |
| Group, Morin, Luc, Savale, Laurent et al. (2021)    |                                         |
| Four-Month Clinical Status of a Cohort of           |                                         |
| Patients After Hospitalization for COVID-19.        |                                         |
| JAMA                                                |                                         |
| Wu, Qian, Zhong, Lingshan, Li, Hongwei et al.       | - Sample size less than 10,000          |
| (2021) A Follow-Up Study of Lung Function and       |                                         |
|                                                     |                                         |
| Chest Computed Tomography at 6 Months after         |                                         |
| Discharge in Patients with Coronavirus Disease      |                                         |
| 2019. Canadian respiratory journal 2021:<br>6692409 |                                         |
|                                                     | Sample size loss than 10 000            |
| Wynberg, Elke, Willigen Hugo, van, Dijkstra,        | - Sample size less than 10,000          |
| Maartje et al. Evolution of COVID-19 symptoms       |                                         |
| during the first 9 months after illness onset.      |                                         |
| medrxiv preprint                                    | Sample size loss than 10,000            |
| Yusuf, Fauzi, Abubakar, Azzaki, Maghfirah, Desi     | - Sample size less than 10,000          |
| et al. (2021) Global prevalence of prolonged        |                                         |
| gastrointestinal symptoms in COVID-19               |                                         |
| survivors and potential pathogenesis: A             |                                         |
| systematic review and meta-analysis.                |                                         |
| F1000Research 10: 301                               |                                         |
| Ziauddeen, Nida, Gurdasani, Deepti, Hara            | - Sample size less than 10,000          |
| Margaret, E et al. Characteristics of Long Covid:   |                                         |
| findings from a social media surve. medrxiv         |                                         |
| preprint                                            |                                         |

© NICE 2021. All rights reserved. Subject to Notice of rights